Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Замена переменных в двойном интеграле. Двойной интеграл в полярных координатах




16.1.5.1.Теорема о замене переменных в двойном интеграле. Пусть на плоскости Ouv задана область G, и пусть отображение преобразует эту область в область D на плоскости Oxy. Будем считать, что отображение F задаётся функциями . Пусть: 1). F взаимно однозначно отображает G на D; 2). функции x ( u,v ), y ( u,v ) непрерывно дифференцируемы на G (имеют непрерывные частные производные); 3). якобиан не обращается в нуль на G. Докажем, что в этих предположениях .

Док-во. 1. Рассмотрим, как связаны между собой площадь параллелограмма АВСЕ со сторонами в области G и площадь его образа при преобразовании F -криволинейного параллелограмма в области D. С точностью до бесконечно малых высших порядков по сравнению с , площадь криволинейного параллелограмма равна площади обычного параллелограмма, построенного на векторах и . Пусть точка А имеет координаты (u,v ), тогда точка А 1 будет иметь координаты ( x ( u,v ), y ( u,v )), т.е. . Для других точек: (по формуле приращения дифференцируемой функции). Аналогично

, где при . Пренебрежём членами порядка малости выше первого по сравнению с . Тогда .

Пусть теперь i,j,k - базисные орты пространства, в котором лежит плоскость Oxy. Как известно, площадь параллелограмма, построенного на векторах и , равна модулю векторного произведения этих векторов (проекции на орт k равны нулю):

.

Мы доказали замечательную вещь. Если вокруг точки взять маленькую область, то после преобразования F площадь этой области меняется в раз.

2. Перейдём к доказательству основной формулы. Разобьём G прямыми, параллельными осям координат, на области . Образы этих линий дадут разбиение D на области . Для этого разбиения составим интегральную cумму . Устремим ; тогда и . И слева, и справа интегральные суммы записаны для непрерывных функций, следовательно,и слева, и справа существуют пределы - двойные интегралы, и они равны: , что и требовалось доказать.

16.1.5.2. Двойной интеграл в полярных координатах. Нам придётся применять эту формулу, в основном, для перехода к полярным координатам. Роль переменных u и v будут играть r и . Как известно, . Вычислим якобиан: , следовательно, . Двойной интеграл в координатах r, вычисляется также как и в координатах x, y, переходом к двухкратному, при этом внешний обычно берут по . Если область D описывается как , то . Естественно, если - кусочные функции, то внешний интеграл разбивается на несколько слагаемых. Однозначно дать рецепт, когда имеет смысл переходить к полярным координатам, нельзя, это дело опыта. Можно пробовать перейти к r, , если либо f (x, y ), либо кривые, ограничивающие область интегрирования, либо и то, и другое вместе, зависят от комбинации .

Если и/или область D ограничивается эллипсом , полезны обобщённые полярные координаты . Каков якобиан этого преобразования?




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1178; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.