КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Частные случаи векторных полей
. Векторное поле называется однородным (или постоянным), если Векторное поле называется плоским, если все векторы Векторное поле называется центральным, если в каждой точке Векторное поле называется центрально-симметричным, если оно центрально, и функция u (M) зависит только от расстояния r, т.е. от длины радиуса-вектора точки М: Найдем вид центрально-симметричного поля, для которого дивергенция равна нулю (в дальнейшем мы будем называть такие поля соленоидальными): Таким образом, соленоидальны только те центрально-симметричные поля, в которых зависимость от r такая же, как в законах Кулона и всемирного тяготения. В связи с этим встают мировоззренческие вопросы о том, вычислял ли Господь Бог дивергенцию, когда создавал Вселенную, и о связи показателя степени в знаменателях законов Кулона и всемирного тяготения с пространственной размерностью мира, в котором мы живём 17.2.4. Векторные линии. Так как вектор Определение. Векторной линией поля В силовой интерпретации поля векторными линиями являются силовые линии поля, в гидродинамической - векторные линии есть траектории, по которым движутся частицы жидкости (линии тока). Получим дифференциальные уравнения векторных линий в декартовой системе координат. Пусть векторная линия определяется векторным уравнением
Эта записанная в симметричной форме система из трёх уравнений первого порядка и определяет векторные линии. Так как функции P, Q, R одновременно не обращаются в нуль, то в любой точке одна из них отлична от нуля. Пусть, например, в точке Пусть, например, поле
17.3.Поток векторного поля через поверхность. В разделе 16.4. Поверхностные интегралы мы рассмотрели задачу о вычислении количества жидкости, протекающей через определённую сторону двусторонней поверхности Среди других достоинств математики её мощь заключается, в частности, в способности исследовать процессы в самых разных областях естествознания, абстрагируясь от их физической сущности; приведённые выше примеры показывают естественность введения понятия потока векторного поля через поверхность. 17.3.1. Определение. Пусть Существуют различные формы записи этого интеграла. Так как
и использовать координатную запись поля 17.3.2. Свойства потока векторного поля. Согласно определению, поток - поверхностный интеграл, поэтому он имеет все свойства поверхностного интеграла. Понятно, что некоторые из этих свойств теряют смысл (интеграл от единичной функции, например), поэтому перечислим основные свойства потока. 1. Линейность. 2. Аддитивность. 3. Поток меняет знак при изменении стороны поверхности (так как в каждой точке 17.3.3. Вычисление потока векторного поля. В соответствии с определением П поток может вычисляться и с помощью поверхностного интеграла первого рода, и с помощью поверхностного интеграла второго рода. В примере 2 раздела 16.4.4.3. Вычисление поверхностного интеграла второго рода было приведено вычисление потока поля
Решение. Поверхность состоит из двух частей: 1. Вычисление с помощью поверхностного интеграла первого рода: П=П1+П2, П1 П2
П=П1+П2
Интеграл Интеграл Ответы, как и должно быть, совпали, однако вычисления с помощью криволинейного интеграла первого рода оказались существенно более простыми. 17.3.4. Теорема Остроградского. Пусть
Дата добавления: 2014-01-07; Просмотров: 625; Нарушение авторских прав?; Мы поможем в написании вашей работы! |