КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Определение основных конструктивных размеров ректификационной колонны
Методика тепло – и массообменного расчета колонных аппаратов Общая схема расчета колонных аппаратов Целью расчета массообменного аппарата является определение конструктивных размеров, т.е. высоты и диаметра колонны, гидромеханических и экономических показателей ее работы. Расчет диффузионного аппарата рекомендуется проводить в такой последовательности. Для расчета задано: 1) тип аппарата; 2) разделяемая смесь и поглотитель (абсорбент, экстрагент или растворитель, адсорбент); 3) производительность; 4) концентрации компонентов на входе и выходе из аппарата. Требуется определить: 1) физические параметры смеси; 2) расход поглотителя или веса чистых компонентов (уравнение материального баланса); 3) движущую силу процесса; 4) коэффициенты массоотдачи и массопередачи; 5) построить кривую равновесия, рабочую линию и число ступеней изменения концентрации; 6) поверхность фазового контакта а конструктивные размеры; 7) количество подводимого или отводимого тепла (тепловой баланс); 8) гидродинамическое сопротивление аппарата; 9) механическую прочность и устойчивость; 10) экономические показатели работы колонны. Основными конструктивными размерами являются ее диаметр и высота H. Эти величины взаимосвязаны, так как обе зависят от скорости пара в свободном сечении колонны.Диаметр колонны определяется в зависимости от скорости и количества поднимающихся в колонне паров , (3) где – скорость пара, отнесенная к полному поперечному сечению колонны, м/с; – секундный объем поднимающихся паров, м3/с. , (4) где – количество поднимающихся по колонне паров, кмоль/ч; средняя температура пара, град; – масса получаемого дистиллята из колонны; R– флегмовое число. Если масса дистиллята выражена в кг/с, то объемный расход проходящего через колонну пара (м3 /с) , (5) Допустимая оптимальная скорость пара (м/с) в колонне , (6) где G– коэффициент, зависящий от конструкции тарелок, расстояния между ними, давления и нагрузки колонны по жидкости (определяется по графику); – плотность жидкости, кг/м3; – плотность пара, кг/м3. Если ,то . Скорость пара в колонне можно также определить по другим формулам, приведенным в литературе. Подсчитав диаметр колонны, подбирают по нормалям и определяют конструктивные размеры основных элементов колонны и тарелки, количество паровых патрубков, размеры колпачка, диаметр и количество сливных труб. Диаметр парового патрубка d = 50, 75, 100, 125, 150 мм. Задавшись диаметром d, определяют количество колпачков на тарелке. Сечение всех патрубков должно составлять 10 % сечения колонны. Тогда количество колпачков патрубков определяется из уравнения . Откуда , (7) Возвышение колпачка над паровым патрубком . Диаметр колпачка определяется из условия равенства скорости пара в паровом патрубке и кольцевом зазоре между колпачком и патрубком (м): , (8) где d – толщина стенки патрубка, м. Возвышение уровня жидкости над верхним уровнем прорезей колпачков мм. Площадь сечения прорезей колпачка составляет 75 % площади сечения парового патрубка, т.е. Принимают следующие размеры прямоугольных прорезей: ширина мм, высота мм, расстояние между прорезями мм. Минимальный зазор между колпачками равен 35 мм. Диаметр сливного патрубка (м) , (9) где – среднее количество стекающей жидкости, кг/с; – скорость жидкости в сливном патрубке, м/с; – плотность стекающей жидкости, кг/м3; z = 1, 2, 4, 6, 8 – число сливных патрубков (зависит от и ). Высота колонны зависит от скорости процесса массопередачи и определяется несколькими способами. Для барботажных колонн применяются в основном два способа. Первый способ. Число тарелок определяется путем построения ступенчатой линии между кинетической кривой и рабочей линией.Высота тарельчатой колонны зависит от числа тарелок и расстояния между ними h, которое выбирается на основании опытных данных , (10) Второй способ. Число действительных тарелок. , (11) где – число ступеней изменения концентраций (теоретических тарелок, которое определяется графическим построением ломаной (ступенчатой) линии между кривой равновесия и рабочими линиями по диаграмме Y–X; - средний к.п.д. тарелки. Тогда , (12) где h – расстояние между тарелками (в зависимости от скорости пара и давления в колонне принимается таким, чтобы свести к минимуму механический унос части жидкости парами), м.Для выбора h в зависимости от диаметра колонны можно использовать следующие данные: диаметр колонны, м – 0 - 0,6; 0,6 - 1,2; 1,2 - 1,8; 1,8 и более; расстояние между тарелками h, мм– 152, 305, 46О, 610. В ректификационных колоннах с круглыми колпачками, работающих под атмосферным давлением, расстояние между тарелками h = 250, 300, 350, 400, 450 мм. Обычно значение h находится в пределах 0,1 - 0,6 м.Для насадочных колонн высота насадки H также определяется двумя способами. Первый способ. Требуемая высота слоя насадки или , (13) где , – число единиц переноса (определяется графическим построением ступеней, соответствующих единице переноса, если линия равновесия является прямой или близка к ней, то определяется аналитически: (14) где и – начальная и конечная концентрации низкокипящего компонента в паровой фазе; –равновесная концентрация низкокипящего компонента в паровой фазе (определяется по графику кривой равновесия). Движущую силу можно выразить в единицах давления (упругости паров). Высота единицы переноса (м) , (15) где: – расход пара, кг/с; – средний коэффициент массопередачи, кг/(м2 с); S – поперечное сечение колонны, м2; s н – удельная смоченная поверхность насадки, м2/м3. Для определения коэффициента массопередачи используют диффузионный критерий Нуссельта , (16) где , - диффузионный критерий Прандтля; ; –плотность и коэффициент динамической вязкости пара, Н с/м2; – коэффициент диффузии пара, м2/с. Если , то , (17) где и – коэффициенты массоотдачи; – эквивалентный диаметр насадки, м; – свободный объем насадки, м3 /м2. Второй способ. Высота насадки , (18) где – число теоретических тарелок (ступеней изменения концентраций); – высота слоя насадки, эквивалентного одной ступени изменения концентрации или одной теоретической тарелке.Практически высота, эквивалентная одной теоретической тарелке, зависит от вида насадки и скорости пара (табл.1). Таблица.1 - Зависимость высоты от вида насадки и скорости пара.
Дата добавления: 2014-01-07; Просмотров: 871; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |