КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вопрос 8. Генетика бактерий
1. Наследственный аппарат бактерий 2. Функциональные единицы генома 3. Фактор фсртильности 4. Изменчивость бактериальной клетки 1.Важнейшими признаками живых организмов являются изменчивость и наследственность. Основу наследственного аппарата бактерий, как и всех других организмов, составляет ДНК (у РНК-содержащих вирусов — РНК). Наряду с этим наследственный аппарат бактерий и возможности его изучения имеют р яд особенностей: бактерии — гаплоидные организмы, т. е. они имеют 1 хромосому. В связи с этим при наследовании признаков отсутствует явление доминантности; • бактерии обладают высокой скоростью размножения, в связи с чем за короткий промежуток времени (сутки) сменяется несколько десятков поколений бактерий. Это дает возможность изучать огромные по численности популяции и достаточно легко выявлять даже редкие по частоте мутации. Наследственный аппарат бактерий представлен хромосомой. У бактерий она одна. Если и встречаются клетки с 2, 4 хромосомами, то они одинаковые. Хромосома бактерий — это молекула ДНК. Длина этой молекулы достигает 1,0 мм и, чтобы "уместиться" в бактериальной клетке, она не линейная, как у эукариотов, а суперспирализо-вана в петли и свернута в кольцо. Это кольцо в одной точке прикреплено к цитоплазматической мембране. На бактериальной хромосоме располагаются отдельные гены. У кишечной палочки, например, их более 2 тыс. 2. Генотип (геном) бактерий представлен не только хромосомными генами. Функциональными единицами генома бактерий, кроме хромосомных генов, являются: • IS-последовательности; • транспозоны; • плазмиды. IS-последовательности — короткие фрагменты ДНК. Они не несут структурных (кодирующих тот или иной белок) генов, а содержат только гены, ответственные за транспозицию (способность IS-последовательностей перемещаться по хромосоме и встраиваться в различные ее участки). IS-последовательности одинаковы у разных бактерий. Транспозоны — это молекулы ДНК, более крупные, чем IS-последовательности. Помимо генов, ответственных за транспозицию, они содержат и структурный ген, кодирующий тот или иной признак. Транспозоны легко перемещаются по хромосоме. Их положение сказывается на экспрессии как их собственных структурных генов, так и соседних хромосомных. Транспозоны могут существовать и вне хромосомы, автономно, но неспособны к автономной репликации. Плазмиды — кольцевые суперспиралевидные молекулы ДНК. Их молекулярная масса колеблется в широких пределах и может быть в сотни раз больше, чем у транспозонов. Плазмиды содержат структурные гены, наделяющие бактериальную клетку разными, весьма важными для нее свойствами: • R-плазмиды — лекарственной устойчивостью; • Col-плазмиды — способностью синтезировать колицины; • F-плазмиды — передавать генетическую информацию; • Шу-плазмиды — синтезировать гемолизин; • Тох-плазмиды — синтезировать токсин; • плазмиды биодеградации — разрушать тот или иной субстрат и т. д. Плазмиды могут быть интегрированы в хромосому (в отличие от IS-последовательностей и транспозонов, встраиваются в строго определенные участки), а могут существовать автономно. В этом.случае они обладают способностью к автономной репликации, и именно поэтому в клетке может быть 2, 4, 8 копий такой плазмиды. Многие плазмиды имеют в своем составе гены трансмиссивности и способны передаваться от одной клетки к другой при конъюгации (обмене генетической информацией). Такие плазмиды называются трансмиссивными. 3. Наличие F-плазмиды (фактор фертилъности, половой фактор) придает бактериям функции донора, и такие клетки способны передавать свою генетическую информацию другим, F-клеткам. Можно сказать, что наличие F-плазмиды является фенотипиче-ским выражением (проявлением) пола у бактерий: с F-плазмидой связана не только донорская функция, но и некоторые другие фенотипические признаки — наличие F-пилей (половых ресничек) и чувствительность к L-фагам. С помощью F-ресничек устанавливается контакт между донорскими и реципиентными клетками. Через их канал и передается донорская ДНК при рекомбинации. На половых ресничках расположены рецепторы для мужских fj-фагов. F-клетки не имеют таких рецепторов и нечувствительны к таким фагам. 4. У бактерий различают 2 вида изменчивости — фенотипическую и генотипическую. Фенотипическая изменчивость — модификация — не затрагивает генотип, но затрагивает большинство особей популяции. Модификации не передаются по наследству и с течением времени затухают, т. е. возвращаются к исходному фенотипу через большее (длительные модификации) или меньшее (кратковременные модификации) число поколений. Генотипическая изменчивость затрагивает генотип. В ее основе лежат мутации и рекомбинации. Мутации бактерий принципиально не отличаются от мутаций эукариотических клеток. Особенностью мутаций у бактерий является относительная легкость их выявления, так как имеется возможность работать с большими по численности популяциями бактерий. По происхождению мутаиии могут быть: • спонтанными; • индуцированными. По протяженности: • точечными; • генными; • хромосомными. По направленности: - прямыми; - обратными. Рекомбинации (обмен генетическим материалом) у бактерий отличаются от рекомбинаций у эукариот: • у бактерий имеется несколько механизмов рекомбинаций; • при рекомбинациях у бактерий образуется не зигота, как у эукариот, а мерозигота (несет полностью генетическую информацию реципиента и часть генетической информации донора в виде дополнения); • у бактериальной клетки-рекомбината изменяется не только качество, но и количество генетической информации. Трансформация — это обмен генетической информацией у бактерий путем введения в бактериальную клетку-реципиент готового препарата ДНК (специально приготовленного или непосредственно выделенного из клетки-до нора). Чаще всего передача генетической информации происходит при культивировании реципиента на питательной среде, содержащей ДНК донора. Для восприятия донорской ДНК при трансформации клетка-реципиент должна находиться в определенном физиологическом состоянии (компетентности), которое достигается специальными методами обработки бактериальной популяции. При трансформации передаются единичные (чаще 1) признаки. Трансформация является самым объективным свидетельством связи ДНК или ее фрагментов с тем или иным фенотипическим признаком, поскольку в реципиентную клетку вводится чистый препарат ДНК. Трансдукция — обмен генетической информацией у бактерий путем передачи ее от донора к реципиенту с помощью умеренных (трансдуцирующих) бактериофагов. Трансдуцирующие фаги могут переносить 1 или более генов (признаков). Трансдукиия бывает: • специфической — переносится всегда один и тот же ген; • неспецифической — передаются разные гены. Это связано с локализацией трансдуиируюших фагов в геноме донора: • в случае специфической трансдукции они располагаются всегда в одном месте хромосомы; • при неспецифической их локализация непостоянна. Конъюгация — обмен генетической информацией у бактерий путем передачи ее от донора к реципиенту при их прямом контакте. После образования между донором и реципиентом конъюга-ционного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше контакт, тем большая часть донорской ДНК может быть передана реципиенту. Основываясь на прерывании конъюгации через определенные промежутки времени, можно определить порядок расположения генов на хромосоме бактерий — построить хромосомные карты бактерий (произвести картирование бактерий). Донорской функцией обладают F+-клетки.
Дата добавления: 2014-01-07; Просмотров: 556; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |