Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Графический метод решения ЗЛП, особые случаи решения ЗЛП графическим методом




Задача линейного программирования (ЗЛП). Основные свойства, понятия и определения, примеры практического использования

Наиболее изученными задачами оптимизации являются задачи линейного программирования (ЗЛП), для которых разработан универсальный метод решения – симплекс-метод (метод последовательного улучшения плана).

Определение 1. Задача линейного программирования имеет вид:

Найти максимум или минимум линейной функции
(6.1)
при линейных ограничениях
(6.2)
(6.3)
где , – заданные постоянные величины.

Вектор называется допустимым решением (допустимым планом) ЗЛП, если его компоненты удовлетворяют системе ограничений (6.2) и (6.3).

План называется оптимальным планом (оптимальным решением) ЗЛП, если , т.е. допустимый план, который дает максимум или минимум целевой функции.


Определение 2. Канонической формой записи ЗЛП называется задача вида:

(6.4)
, (6.5)
, (6.6)
. (6.7)
где , , – заданные постоянные величины.

Любую ЗЛП можно привести к каноническому виду (КЗЛП). Чтобы неравенства обратились в равенства достаточно:

· в левую часть каждого неравенства со знаком ²≤² ввести добавочную переменную со знаком ²–²;

· в левую часть каждого неравенства со знаком ²³² ввести добавочную переменную со знаком ²+².

 

Для выработки наглядных представлений о ЗЛП рассмотрим графический метод, который может быть применен в случае решения ЗЛП с двумя переменными:

(7.1)
, (7.2)
(7.3)
где , – заданные постоянные величины.

Геометрически ЗЛП представляет собой отыскание в многоугольнике решений такой угловой точки, координаты которой дают максимальное (минимальное) значение линейной целевой функции, причем допустимыми решениями являются все точки многоугольника решений.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 799; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.