КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Механика твердого тела
Кинетическая энергия вращения. Момент инерции материальной точки и тела относительно неподвижной оси. Пусть материальная точка массой m движется вокруг некоторой оси по окружности радиуса r со скоростью υ. Тогда кинетическую энергию точки с учетом связи линейной и угловой скоростей υ =ω·r можно записать так: , где величина J=m·r2 называется моментом инерции материальной точки. Моментом инерции тела относительно оси называется сумма моментов инерции элементов (материальных точек), из которых состоит тело: . Момент инерции сплошного тела определяют интегрированием по всему объему (по всем материальным точкам): . Если тело имеет плотность ρ, то последнее равенство можно представить в виде: , где учтено, что d т= ρ·dV. Момент инерции сплошного цилиндра массой т и радиуса основания R относительно оси, проходящей через центр масс цилиндра параллельно его образующей, рассчитанный по этой формуле, равен: . Для сплошного шара массой т и радиуса R момент инерции относительно оси, проходящей через центр масс шара, равен: . Момент инерции для стержня длиной ℓ и массой т относительно оси, проходящей через центр масс стержня перпендикулярно ему,: . Момент инерции J тела характеризует, с одной стороны, инертные свойства тела при вращательном движении, а с другой стороны, распределение вещества в пространстве относительно оси. Момент инерции, так же как и масса тела, является аддитивной величиной. Если известен момент инерции Jo тела относительно оси, проходящей через центр масс тела, то можно найти его момент инерции относительно любой другой параллельной ей оси: J = J0 + m·d 2, где d – расстояние между осями. Последнее равенство выражает теорему Штейнера: момент инерции относительно любой оси вращения равен моменту инерции относительно параллельной оси, проходящей через центр масс, сложенному с произведением массы тела на квадрат расстояния центра масс тела от оси вращения. Из теоремы Штейнера очевидно, что всегда J>J0, т.е. минимальное значение момента инерции достигается для оси, проходящей через центр масс. Единицей момента инерции в системе СИ служит 1 кг·м2. Если тело катится, то кинетическая энергия такого тела определяется поступательным движением тела как целого и вращением относительно движущейся оси: .
Дата добавления: 2014-01-07; Просмотров: 259; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |