КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Оловянные бронзы
Классификация медных сплавов. Латуни. Различают 2 основные группы медных сплавов: 1) латуни, сплавы меди с цинком и 2) бронзы, сплавы меди с другими элементами, в числе которых, но наряду с другими может быть и цинк. Медные сплавы обладают высокими механическими и технологическими свойствами, хорошо сопротивляются износу и коррозии. Обозначаются сплавы начальной буквой (Л – латунь, Б – бронза), после чего следуют 1е буквы основных элементов, образующих сплав. Например, О – олово, Ц – цинк, Мц – марганец, Ж – железо, Ф – фосфор, Б – бериллий, Х – хром и т.д. Цифры следующие за буквой, указывают количество легирующих элементов. Например, ЛЖМц59-1-1 – латунь, содержащая 59% меди, 1% железа и 1% Мn, остальное цинк. Или: БрОФ6,5-0,15 – бронза, содержащая 6,5 олова, 0,15 Р, остальное медь. Латуни – это двойные или многокомпонентные сплавы на основе меди, легирующий элемент – цинк. Диаграмма состояния Cu-Zn сложна и состоит из 5-ти перитектических диаграмм. В твердом состоянии в сплавах возможно образование 6-ти фаз. Zn при комнатной температуре растворяется в меди на 39%, не меняется практически до 4530С. Образуется a - твердый раствор Zn в меди с решеткой меди ГЦК. Наиболее часто структура латуней состоит из a и a+b¢ фаз. b¢ - фаза – упорядоченный b - твердый раствор на базе электронного соединения CuZn с решеткой ОЦК. При высоких температурах b - фаза имеет неупорядоченное расположение атомов и широкую область гомогенности. В этом состоянии b - фаза пластична. При температуре 454-4680С расположение атомов Cu и Zn упорядочивается и фаза обозначается b¢. Механические свойства сплава зависят от содержания Zn. В области a - твердого раствора прочность и пластичность растут. При появлении в структуре b¢ - кристаллов пластичность падает, а прочность возрастает до содержания цинка 45%. При большем содержании цинка структура сплава состоит из b¢ - фазы и прочность сильно уменьшается из-за высокой хрупкости. Технические латуни содержат 40-45% цинка. В зависимости от содержания цинка различают a - латуни и a+b¢ - латуни. 1-е хорошо деформируются в горячем и холодном состояниях. 2-х фазные a+b¢ - латуни мало пластичны в холодном состоянии. Обычно их подвергают горячей обработке давлением при температурах, соответствующих области b или a+b¢ - фаз. a+b¢ - латуни более прочны и износостойки, чем a - латуни. Нередко используют специальные или многокомпонентные латуни, получаемые легированием двойных латуней алюминием, Fe, Ni, Sn, Mn, Pb и т.д. Все, кроме Ni, легирующие элементы уменьшают растворимость Zn в меди и способствуют образованию b¢ - фазы. Электронные соединения (фазы Юм-Розери) образуются между 2-мя металлами из следующих групп: Cu, Ag, Au, Fe, Co, Ni, Pd, Pt с одной стороны и Be, Zn, Cd, Al, Sn, Si с другой стороны. Эти соединения характеризуются определенным соотношением между валентными электронами и числом атомов (3/2, 21/13 или 7/4), причем каждому соотношению соответствует определенная кристаллическая решетка. Например, при отношении числа валентных электронов к числу атомов, равному 3/2 образуется решетка ОЦ куба (так называемая b - фаза). Все соединения, у которых отношение числа валентных электронов к числу атомов равны 21/13, имеют сложную кубическую решетку с 52 атомами на ячейку (g-фаза), при отношении 7/4 – гексагональную решетку (e-фаза). Например, в системе Cu-Zn b - фазой является соединение Cu-Zn (3/2), g-фазой - Cu5Zn8 (21/13) и e - фазойCuZn3 (7/4). У электронных соединений определенное соотношение атомов и новая, отличная от элементов кристаллическая решетка – это признаки, характерные для химического соединения. Однако в соединении нет упорядоченного расположения атомов. При высоких температурах атомы обоих элементов часто не занимают определенных узлов в решетке, т.е. располагаются статистически. При понижении температуры до определенного значения происходит упорядочение, которое обычно не бывает полным. Таким образом, и этот тип соединений следует считать промежуточным между химическим соединением и твердым раствором. Электрические соединения в сплавах меди
В связи с этим специальные латуни чаще всего 2-х фазные a+b¢. Ni увеличивает растворимость Zn в меди, уменьшает количество b¢ - фазы и при определенном соединении Ni сплав становится однофазным (a-латунь). Легирующие элементы увеличивают прочность, в частности, твердость, но уменьшают пластичность латуни. Свинец облегчает обрабатываемость резанием и улучшает антифрикционные свойства. Сопротивление коррозии повышают Al, Zn, Si, Mn, Ni. Наклепанные латуни и содержащие Zn свыше 20% в присутствии влаги, О2, NH3 склонны к коррозионному растрескиванию. Во избежание этого латунные полуфабрикаты указанных свойств отжигают при 250-650 оС, а изделия из латуни при 250-270 оС. По техническому признаку латуни подразделяют на 2 группы: деформируемые, из которых изготавливают листы, ленты, трубы, проволоку и другие полуфабрикаты и литейные – для фасонного литья. Последние обладают хорошей жидкотекучестью, мало склонны к ликвации и обладают антифрикционными свойствами. Если требуется высокая пластичность, теплопроводимость и важно отсутствие склонности к коррозионному растрескиванию, применяют α- латуни с высоким содержанием меди: Л96 и Л9Л (латуни, содержащие до 10% цинка, называют томпаком, а от 10 до 20% цинка – полутомпаком). Латуни с большим содержанием цинка – Л70 (a-л) и Л62 (a+bл¢) обладают более высокой прочностью, лучше обрабатываются резанием, дешевле, но хуже сопротивляются коррозии. Наиболее пластична a - латунь Л70, которую используют чаще всего для изготовления деталей штамповкой. В судостроении применяют коррозионностойкую деформируемую латунь [-ЛАЖ60-1-1] и ЛЖМц59-1-1. Еще более стойки в морской воде латуни, легированные Sn ЛО70-1 и ЛО62-1, так называемые морские латуни. ЛС59-1 – автоматная латунь поставляется в прутках, из нее изготавливают изделия на станках-автоматах. Для уменьшения твердости полуфабрикаты подвергают рекристаллизационному отжигу при 600-700 оС. Для отделения слоя окалины охлаждают на воздухе или в воде. Чтобы получить мелкозернистость структуры перед глубокой вытяжкой полосы и ленты отжигают при более низкой температуре: 450-5500С. Структура и свойства a+b¢ - латуней зависят от скорости охлаждения. При быстром охлаждении возрастает количество b¢ - фазы, что повышает твердость и иногда улучшает обработку резанием. При необходимости холодной обработки давлением, когда нужна высокая пластичность, охлаждение должно быть медленным, чтобы получить больше a - фазы. Латуни, предназначенные для фасонного литья с повышенной прочностью, содержат большое количество специальных присадок, улучшающих их литейные свойства. Такие латуни более коррозионностойки. Оловянистая бронза – один из старейших металлических сплавов. Медь дает с Sn диаграмму состояния, состоящую, подобно меди с цинком, из ряда перитектических диаграмм. Однако, влияние олова на структуру сплавов эффективнее влияния цинка приближенно в 2 раза. Оловянистые бронзы подвержены сильной дендритной ликвации [на что указывает очень большое расстояние между линиями ликвидус и солидус на диаграмме состояния Cu-Sn]. В системе Cu-Sn образуется a - твердый раствор Sn и Cu с ГЦК решеткой и ряд промежуточных твердых растворов, полученных на основе соединений электронного типа. Основой b - твердого раствора является соединение Cu5Sn с отношением числа валентных электронов к числу атомов 3/2; основой g - твердого раствора – соединение Cu31Sn8 (21/13) и основой e - твердого раствора Cu3Sn – 7/4. Структура промышленных оловянистых бронз из-за малой скорости диффузии олова в меди, а также по причине сильной ликвации не всегда соответствует диаграмме сплавов Cu-Sn. Из-за малой скорости превращения литые бронзы с 8-10% Sn состоят из a - твердого раствора в Cu неоднородной концентрации и эвтектоида. Дендриты бронзы, богатые медью, при травлении темнеют, а междендритные пространства, богатые оловом, а также эвтектоид, остаются светлыми. Если в бронзе присутствует цинк, он полностью находится в твердом состоянии и не обнаруживается под микроскопом. Он улучшает ее механические свойства и жидкотекучесть. Свинец присутствует в виде отдельных темных включений, которые можно различить даже без травления. Он улучшает антифрикционные свойства и обрабатываемость режущим инструментом. Никель повышает механические свойства, измельчая зерно. Фосфор служит раскислителем и устраняет хрупкие включения оксида олова, повышает жидкотекучесть, износостойкость и антифрикционные свойства. Химический состав оловянистых бронз: БрОЦС6-6-3, Sn 6, Zn 6, 3%Pb. Наилучшими литейными свойствами – минимальной усадкой – обладают оловянистые бронзы, например, БрОФ-10-1, называемая фосфористой, но она дорогая. Более дешевые и доступные вторичные бронзы, получаемые при переплавке лома и отходов, например, БрОЦС6-6-3.
Дата добавления: 2014-01-07; Просмотров: 469; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |