КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Проведение возбуждения по нервам
Показатели силы и работы мышц в процессе роста. Изменение структуры мышцы с возрастом. Анатомически у новорожденных имеются все скелетные мышцы, но относительно веса тела они составляют всего 23% (у взрослого 44%). Количество мышечных волокон в мышцах такое же, как у взрослого. Однако микроструктура мышечных волокон отличается. Волокна меньше диаметром, в них больше ядер. По мере роста происходит утолщение и удлинение волокон. Это происходит за счет утолщения миофибрилл, оттесняющих ядра на периферию. Размеры мышечных волокон стабилизируются к 20 годам. Мышцы у детей эластичнее, чем у взрослого, т.е. быстрее укорачиваются при сокращении и удлиняются при расслаблении. Возбудимость и лабильность новорожденных ниже, чем у взрослых, но с возрастом растет. У новорожденных даже во сне мышцы находятся в состоянии тонуса. Развитие различных групп мышц происходит неравномерно. В 4-5 лет более развиты мышцы предплечья, отстают в развитии мышцы кисти. Ускоренное созревание мышц кисти происходит в 5-6 лет. Причем разгибатели развиваются медленнее сгибателей. С возрастом изменяется соотношение тонуса мышц. В раннем детстве повышен тонус мышц кисти, разгибателей бедра и т.д. Постепенно распределение тонуса нормализуется. С возрастом сила мышечных сокращений увеличивается. Это объясняется не только уменьшением мышечной массы, но и совершенствованием двигательных рефлексов. Например, сила кисти с5 до 16 лет возрастает в 5-6 раз, мышц ног в 2-2,5 раза. Показатели силы до 10 лет больше у мальчиков. С 10-12 лет – у девочек. Способность к быстрым и точным движениям достигается к 14 годам, выносливость к 17. В 10-11 лет ребенок способен выполнять работу мощностью 100 Вт, 18-19 лет 250-300 Вт. ФИЗИОЛОГИЯ ПРОЦЕССОВ МЕЖКЛЕТОЧНОЙ ПЕРЕДАЧИ ВОЗБУЖДЕНИЯ. Функцию быстрой передачи возбуждения к нервной клетке и от нее выполняют ее отростки – дендриты и аксоны, т.е. нервные волокна. В зависимости от структуры их делят на мякотные, имеющие миелиновую оболочку, и безмякотные. Эта оболочка формируется шванновскими клетками, являющимися видоизмененными глиальными клетками. Они содержат миелин, который в основном состоит из липидов. Он выполняет изолирующую и трофическую функции. Одна шванновская клетка образует оболочку на 1 мм нервного волокна. Участки, где оболочка прерывистая, т.е. не покрыта миелином, называют перехватами Ранвье. Ширина перехвата 1 мкм. Функционально все нервные волокна делятся на 3 группы: 1. Волокна типа А – это толстые волокна, имеющие миелиновую оболочку. В эту группу входят 4 подтипа: · А альфа – двигательные волокна скелетных мышц и афферентные нервы, идущие от мышечных веретен – рецепторов растяжения. Скорость проведения 70-120 м/с. · А бета – афферентные волокна, идущие от рецепторов давления и прикосновения кожи. Скорость 30-70 м/с. · А гамма – эфферентные волокна, идущие к мышечным веретенам (15-30 м/с). · А дельта – афферентные волокна от температурных и болевых рецепторов кожи (12-30 м/с). 2. Волокна группы В – тонкие миелиновые волокна, являющиеся преганглионарными волокнами вегетативных эфферентных путей. Скорость проведения 3-18 м/с. 3. Волокна группы С – безмиелиновые постганглионарные волокна вегетативной нервной системы. Скорость 0,5-3 м/с. Проведение возбуждения по нервам подчиняется следующим законам: 1. Закон анатомической и физиологической целостности нервов, т.е. нерв способен выполнять свою функцию лишь при обоих этих условиях. Первые нарушения при перерезке, вторые – при действии веществ, блокирующих проведение, например, новокаин. 2. Закон двустороннего проведения возбуждения. Оно распространяется в обе стороны от места раздражения. В организме чаще всего возбуждение по афферентным путям идет к нейрону, а по эфферентным – от нейрона. Такое распространение называется ортодромным. Очень редко возникает обратная или антидромное распространение возбуждения. 3. Закон изолированного проведения. Возбуждение не передается с одного не нервного волокна на другое волокно, входящее в состав этого же нервного ствола. 4. Закон без декрементного проведения. Возбуждение проводится по нервам без декремента, т.е. без затухания. Следовательно, нервные импульсы не ослабляются, проходя по нервам. 5. Скорость проведения прямо пропорциональна диаметру нервов. Нервные волокна обладают свойствами электрического кабеля, у которого не очень хорошая изоляция. В основе механизма проведения возбуждения лежит возникновение местного тока. В результате генерации потенциала действия в аксонном холмике и реверсии мембранного потенциала, мембрана аксона приобретает положительный заряд. Снаружи она становится отрицательной, внутри положительной. Мембрана нижележащего невозбужденного аксона заряжена противоположным образом. Поэтому между этими участками по наружной и внутренней поверхностям мембран начинают проходить местные токи. Эти токи деполяризуют мембрану нижележащего невозбужденного участка нерва до критического уровня, и в нем также генерируется потенциал действия. Затем процесс повторяется и возбуждается более отдаленный участок нерва и т.д. Так как по мембране безмякотного волокна местные токи текут не прерываясь, то такое проведение называется непрерывным. При непрерывном проведении местные токи захватывают большую поверхность волокна, поэтому им требуется длительное время для прохождения по участку волокна. В результате дальность и скорость проведения по безмякотному волокну небольшая. В мякотных волокнах участки, покрытые миелином, обладают большим электрическим сопротивлением. Поэтому непрерывное проведение потенциала действия невозможно. При генерации потенциала действия местные токи текут лишь между соседними перехватами. По закону «все или ничего» возбуждается ближайший к аксонному холмику перехват Ранвье, затем соседний нижележащий перехват и т.д. Такое проведение называется сальтаторным (прыжком). При этом механизме ослабление местных токов не происходит, и нервные импульсы распространяются на большее расстояние, с большой скоростью. Синоптическая передача. Строение и классификация синапсов. Синапсом называется место контакта нервной клетки с другим нейроном или исполнительным органом. Все синапсы делятся на следующие группы: 1. По механизму передачи. · Электрические. В них возбуждение передается посредствам электрического поля. Поэтому оно может передаваться в обе стороны. Их в центральной нервной системе (ЦНС) мало. · Химические. Возбуждение через них передается с помощью ФАВ – нейромедиаторов. Их в ЦНС большинство. · Смешанные (электрохимические). 2. По локализации. · Центральные, расположенные в ЦНС. · Периферические, находящиеся вне ее. Это нервно-мышечные синапсы и синапсы периферических отделов вегетативной нервной системы. 3. По физиологическому значению. · Возбуждающие. · Тормозные. 4. В зависимости от нейромедиатора, используемого для передачи. · Холинергические – медиатор ацетилхолин (АХ). · Адренергические – норадреналин (НА). · Серотонинергические – серотонин (СЕ). · Глицинергические = аминокислота глицин (ГЛИ). · ГАМК-ергические – гамма аминомасляная кислота (ГАМК). · Дофаминергические – дофамин (ДА). · Пептидергические – медиаторами являются нейропептиды. В частности роль нейромедиаторов выполняют вещество Р, опиоидный пептид, В-эндорфин и другие. Предполагают, что имеются синапсы, где функции медиатора выполняют гистамин, АТФ, глутамин, аспарат, ряд местных пептидных гормонов. 5. По месту расположения синапсов. · Аксо-дендритные (между аксоном одного и дендритом второго нейрона). · Аксо-аксональные. · Аксо-соматические. · Дендро-соматические. · Дендро-дендритные. Наиболее часто встречается три первых типа. Строение всех химических синапсов имеет принципиальное сходство. Например, аксо-дендритный синапс состоит из следующих элементов: 1. Пресинаптическое окончание или терминаль (конец аксона). 2. Синоптическая бляшка, утолщение окончания. 3. Пресинаптическая мембрана, покрывающая пресинаптическое окончание. 4. Синоптические пузырьки в бляшке, которые содержат нейромедиатор. 5. Постсинаптическая мембрана, покрывает участок дендрита, прилегающий к бляшке. 6. Синаптическая щель, разделяет пре- и постсинаптическую мембраны. Ширина 10-15 нМ. 7. Хеморецепторы – белки, встроенные в постсинаптическую мембрану и специфичные для нейромедиаторов. Например, в холинергических синапсах это холинорецепторы, адренергических – адренорецепторы и т.д. Простые нейромедиаторы синтезируются в пресинаптических окончаниях, пептидные – в соме нейронов, а затем по аксонам транспортируются в окончания.
Дата добавления: 2014-01-07; Просмотров: 417; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |