![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Статистический смысл энтропии
Второе начало термодинамики
Многие процессы не противоречат первому началу термодинамики, но не идут. Например, можно нагреть проволоку, замкнув контакты аккумулятора, но нельзя зарядить аккумулятор, нагревая проволоку. 2-е начало позволяет предсказывать возможность, направление и предел протекания процессов. Новые термины: 1)процессы разделяются на самопроизвольные и несамопроизвольные. Самопроизвольный процесс проходит без направленных воздействий на систему, т.е. без совершения работы над системой. Наоборот, система в ходе этого процесса может совершить работу против внешних сил. В ходе самопроизвольного процесса система приближается к равновесию. Примеры: перенос тепла к холодному телу, диффузия, нейтрализация кислот основаниями, горение, коррозия. В изолированной системе протекают только самопроизвольные процессы. Обратные процессы удаляли бы систему от равновесия и самопроизвольно не идут. 2). Равновесный процесс - протекающий через непрерывный ряд равновесных состояний, бесконечно медленный. 3) обратимый процесс - протекающий в прямом, а затем обратном направлении так, что система и cреда возвращаются в исходные состояния. Обратимые процессы равновесные, и наоборот. Реальные процессы не могут быть лишь приближенно обратимыми и равновесными. Когда система поглощает тепло, ей сообщается дополнительная энергия в форме неупорядоченного теплового движения молекул. Увеличивается неупорядоченность системы, количественная мера неупорядоченности - энтропия. Это новая функция состояния, определяемая соотношением: dS=dq/T, где dq - поглощаемое системой тепло в обратимом равновесном процессе. Второе начало термодинамики формулируется так: В любом процессе приращение энтропии больше или равно приведенной теплоте процесса dq/T: dS ³ dq/T Знак = относится к обратимым равновесным процессам. Изолированная система не обменивается теплотой, поэтому в ней возможны лишь процессы, при которых энтропия растет или остается постоянной: dS ³ 0. Энтропия растет до максимального значения, соответствующего положению равновесия. Т.о., S дает критерий самопроизвольного протекания процесса (dS>0) и критерий равновесия (dS = 0, d2S < 0). В рамках статистической физики мерой неупорядоченности системы, состоящей из большого числа частиц, является число возможных микросостояний, соответствующих данному макросостоянию (термодинамическая вероятность системы W). Микросостояние задается набором координат и импульсов всех частиц системы, а макросостояние - набором функций состояния (Т,Р.V,U и др). Число микросостояний очень велико, и термодинамическая вероятность >>1. Энтропия в статистической физике определяется по Больцману: S=klnW, где к - постоянная Больцмана.
Дата добавления: 2014-01-07; Просмотров: 336; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |