КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Электропроводимость электролитов
Лекция 10. Электропроводность биологических тканей и жидкостей для постоянного тока. Первичные механизмы действия постоянного тока на живую ткань. Гальванизация. Лечебный электрофорез. Переменный ток. Различные виды электрических сопротивлений в цепи переменного тока. Импеданс. Сопротивление живой ткани переменному току, его зависимость от частоты тока. Эквивалентная электрическая схема живой ткани. Электрические фильтры. Основные характеристики магнитного поля. Магнитные свойства веществ. Магнитные свойства биологических тканей. Первичные механизмы воздействия магнитных полей на организм. Терапевтическое использование магнитных полей. Биологические жидкости являются электролитами, электропроводимость которых имеет сходство с электропроводимостью металлов: в обеих средах, в отличие от газов, носители тока существуют независимо от наличия электрического поля. В этих средах под воздействием электрического поля возникает упорядоченное (направленное) движение свободных электрических зарядов (электронов, ионов) — электрический ток. Скалярной характеристикой электрического тока является сила тока (I), равная отношению заряда (D q), переносимого через сечение проводника или некоторую поверхность за интервал времени D t к этому интервалу: (12.47) Если электрический ток равномерно распределен по сечению проводника, то отношение силы тока к площади сечения проводника (S) называется плотностью тока (j): (12.48) Установим связь плотности тока с некоторыми характеристиками носителей тока. В § 11.4 была установлена связь между плотностью потока вещества, молярной концентрацией и скоростью направленного движения частиц [см. (11.26)]. Запишем эту формулу для плотности потока частиц, заменив молярную концентрацию с концентрацией п: (12.49) Если эту формулу умножить на заряд q носителя тока, то произведение qJ будет соответствовать заряду, проходящему через единицу площади сечения за одну секунду, т. е. будет являться плотностью тока: (12.50) Как видно, плотность тока прямо пропорциональна заряду носителя тока, концентрации носителей и скорости их направленного движения. Естественно, что выражение (12.50) справедливо при равенстве зарядов носителей тока и одинаковой их скорости. Плотность тока для электролитов следует представить в виде суммы выражений типа (12.50) для положительных и отрицательных ионов: (12.51) т. е. суммарная плотность тока равна
(12.52) Если предположить, что каждая молекула диссоциирует на два иона, то концентрация положительных и отрицательных ионов одинакова: п+ = п- = an, (12.53) где a — коэффициент диссоциации, п — концентрация молекул электролита. Направленное движение ионов в электрическом поле можно приближенно считать равномерным, при этом сила qE, действующая на ион со стороны электрического поля, уравновешивается силой трения ru: qE = ru, откуда, заменяя q/r = b, получаем u = bE. (12.54) Коэффициент пропорциональности b называют подвижностью носителей заряда (ионов). Он равен отношению скорости направленного движения ионов, вызванного электрическим полем, к напряженности этого поля. Для ионов разных знаков из (12.54) соответственно имеем u+ = b+E и u- = b-E (12.55) Подставляя (12.53) и (12.55) в (12.52), находим j = nq a (b+ + b-) E (12.56) Представим электролит в виде прямоугольного параллелепипеда с гранями-электродами площадью S, расположенными на расстоянии l (рис. 12.28). Считая поле однородным, учитывая выражение (12.14), преобразуем (12.56): (12.57) Так как I = jS, то (12.57) соответствует закону Ома для участка цепи без источника тока:где (12.58) — сопротивление электролита. Сравнивая (12.58) с соотношением получаем
(12.59) Отсюда следует, что удельная проводимость g электролита тем больше, чем больше концентрация ионов, их заряд и подвижность. При повышении температуры возрастает подвижность ионов и увеличивается электропроводимость.
Дата добавления: 2014-01-07; Просмотров: 427; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |