КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Квазистационарным называют такой ток, для которого время установления одинакового значения по всей цепи значительно меньше периода колебаний
Переменный ток В широком смысле слова переменный ток — любой ток, изменяющийся со временем. Однако чаще термин «переменный ток» применяют к квазистационарным токам, зависящим от времени по гармоническому закону. Будем считать, что для квазистационарных токов, так же как и для постоянных, сила тока одновременно одинакова в любом сечении неразветвленного проводника. Для них справедлив закон Ома, однако сопротивление цепи зависит от частоты изменения тока. Потерями энергии на электромагнитное излучение этих токов пренебрегаем. Переменный ток можно рассматривать как вынужденные электромагнитные колебания.
Рис. 14.4 Представим три разных цепи (рис. 14.4, а — 14.6, а), к каждой из которых приложено переменное напряжение U = U m cos w t где U m — амплитудное значение напряжения, w — круговая частота колебаний. Для цепи с резистором (рис. 14.4, а) выражение (14.18) запишем в форме (14.19) Используя закон Ома, получим выражение для тока через сопротивление R: (14.20) где (14.21) — амплитуда тока. Как видно из (14.19) и (14.20), ток и напряжение при этом изменяются в одной фазе, что можно изобразить с помощью векторной диаграммы (рис. 14.4, б). На диаграмме амплитуды UR m и I т представлены как одинаково направленные векторы, равномерно вращающиеся против часовой стрелки с угловой скоростью w. Проекция этих векторов на «ось токов» (горизонтальная прямая) дает мгновенные значения напряжения и тока. В цепи с сопротивлением Л (омическим сопротивлением) происходит выделение тепла. Цепь, представленная на рис. 14.5, а, содержит катушку с индуктивностью L, омическое сопротивление равно нулю. Для этой цепи выражение (14.18) запишем в форме UL = ULm cos w t. (14.22)
Рис. 14.5
При приложении переменного напряжения UL в катушке возникает противоположно направленная ЭДС самоиндукции при этом, согласно закону Ома, откуда (14.23) Подставляя (14.23) в (14.22), имеем
(14.24) Разделив переменные в уравнении (14.24), проинтегрируем его: (14.25) Постоянный член в (14.25) равен нулю, так как в цепи действует только переменное напряжение и нет причин для появления постоянной составляющей тока. Окончательно получаем 1 = [ UL m / (L w)] sin w t = 1 m cos (w t - p/2), (14.26) где I m =ULm (L w) (14.27) — амплитуда тока. Как видно из (14.26) и (14.22), фаза тока (w t - p/2), а напряжения — w t. Следовательно, ток отстает по фазе от напряжения на p/2, что показано на векторной диаграмме рис. 14.5, б. Сравнивая (14.27) с законом Ома, заметим, что выражение Х = L w (14.28) играет роль сопротивления цепи, которое называют индуктивным. Это сопротивление вместе с UL m определяет силу тока: чем больше частота w и индуктивность L, тем меньше I m. При чисто индуктивном сопротивлении теплота в цепи не выделяется, так как R = 0. Роль индуктивности сводится к накоплению энергии магнитного поля и возвращению этой энергии обратно источнику тока. Таким образом, происходит периодическая перекачка энергии от источника в цепь и от цепи к источнику, в идеальном случае без потерь энергии. В цепи, в которой имеется только конденсатор с электроемкостью С (рис. 14.6 а), омическое сопротивление всюду, кроме емкости, и индуктивность цепи равны нулю. Омическое сопротивление R конденсатора для постоянного тока бесконечно велико. Напряжение на конденсаторе выражается зависимостью: UС = UC m cos w t. (14.29) Ток в цепи будет определяться скоростью изменения заряда на обкладках конденсатора. Используя соотношение для электроемкости, найдем (14.30)
Рис. 14.6
На основании (14.29) запишем
(14.31) где (14.32) — амплитуда тока. Как видно из (14.31) и (14.29), фаза тока (w t - p/2), а напряжения — w t. Следовательно, ток опережает напряжение на p/2, что показано на векторной диаграмме (рис. 14.6, б). Сравнивая (14.32) с законом Ома, заметим, что выражение ХL = L w (14.33) играет роль сопротивления цепи, которое называют емкостным. Оно определяет амплитуду тока: чем меньше емкость С и частота со, тем меньше I m. Для постоянного тока (w = 0) емкость является бесконечно большим сопротивлением, и тока в такой цепи не будет. Заметим, что отсутствие конденсатора в цепях с резистором или индуктивностью формально означало не С = 0, а ХC = 0, т. е. С ® ¥. В цепи с конденсатором теплота не выделяется, так как омическое сопротивление проводников равно нулю (нагревание диэлектрика в переменном электрическом поле здесь не учитывается, оно будет рассмотрено позже). Роль емкости сводится к накоплению энергии электрического поля конденсатора и возвращению этой энергии обратно источнику тока. Происходит периодическая перекачка энергии от источника в цепь и от цепи к источнику, в идеальном случае без потерь энергии. Из формул (14.28) и (14.33) можно убедиться, что индуктивное и емкостное сопротивление в СИ измеряются в омах.
Дата добавления: 2014-01-07; Просмотров: 348; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |