Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Поглощение света

Лекция 15.

Поглощение света и его законы. Показатель поглощения, коэффициент пропускания, оптическая плотность. Регистрация спектров поглощения биологических объектов. Фотоколориметрия и спектрофотометрия.

Рассеяние света. Нефелометрия.

Вынужденное излучение, его особенности. Условия усиления света. Оптические квантовые генераторы (лазеры). Характеристики лазерного излучения. Воздействие низкоинтенсивного и высокоинтенсивного лазерного излучения на биологические ткани. Физические основы ла­зерной терапии и хирургии.

 

Излучение и поглощение энергии атомами и молекулами

Огромное количество разных явлений происходит потому, что изменяется энергия атомов и молекул. Во многих случаях эффективное использование явления для практики оказывается возможным только с непременным учетом его молекулярной (атомной) природы

В этой главе излагаются особенности излучения и поглощения энергии атомами и молекулами, а также некоторые практически важные явления, знание молекулярной природы которых существенно для их использования. Некоторые вопросы этой обширной темы рассматриваются в следующей главе.

Интенсивность света, распространяющегося в среде, может уменьшаться из-за поглощения и рассеяния его молекулами (атомами) вещества.

Поглощением света называют ослабление интенсивности света при прохождении через любое вещество вследствие превращения световой энергии в другие виды энергии.

Поглощение кванта света происходит при его неупругом столкновении с молекулой (атомом), приводящем к передаче энергии фотона веществу, и является случайным событием. Вероятность поглощения кванта света образцом вещества толщиной l (рис. 24.1) оценивается величиной коэффициента поглощения 1 - Т, равного отношению интенсивностей поглощенного света I п = I 0 - I к интенсивности падающего I 0

(24.1)

где I — интенсивность прошедшего света, —коэф-фициент пропускания.

Выведем закон поглощения света веществом. Выделим тонкий слой вещества d x, перпендикулярный пучку монохроматического света интенсивностью i (I 0 ³ i ³ I), и будем исходить из предположения, что ослабление света (доля поглощенных квантов) -d i / i таким слоем не зависит от интенсивности (если интенсивность не слишком велика), а определяется только толщиной слоя d x и коэффициентом пропорциональности k l:

-d i / i = k ld x. (24.2)

Коэффициент k l различен для разных длин волн и его величина зависит от природы вещества. Интегрируя (24.2) и подставив пределы интегрирования для х от 0 до l и для i от I 0 до I, получаем

откуда, потенцируя, имеем

(24.3)

Эта формула выражает закон поглощения света Бугера. Коэффициент k l называют натуральным показателем поглощения, его величина обратна расстоянию, на котором интенсивность света ослабляется в результате поглощения в среде в е раз.

Так как поглощение света обусловлено взаимодействием с молекулами (атомами), то закон поглощения можно связать с некоторыми характеристиками молекул. Пусть n — концентрация молекул (число молекул в единице объема), поглощающих кванты света. Обозначим буквой s эффективное сечение поглощения молекулы — некоторую площадь, при попадании фотона в которую происходит его захват молекулой. Другими словами молекулу можно представить как мишень определенной площади.

Если считать, что площадь сечения прямоугольного параллелепипеда (рис. 24.1) равна S, то объем выделенного слоя S d x, а количество молекул в нем nS d x; суммарное эффективное сечение всех молекул в этом слое будет snS d x. Доля площади поперечного сечения поглощения всех молекул в общей площади сечения

(24.4)

Можно считать, что такая же, как и (24.4), часть попавших на слой квантов поглощается молекулами, ибо отношение площадей определяет вероятность взаимодействия одного кванта с молекулами выделенного слоя. Доля поглощенных слоем квантов равна относительному уменьшению интенсивности (d i/i) света. На основании изложенного можно записать

(24.5)

откуда после интегрирования и потенцирования имеем

I = I 0e- snl. (24.6)

В это уравнение, аналогичное (24.3), входит параметр s, который отражает способность молекул поглощать монохроматический свет используемой длины волны.

Более приняты молярные концентрации С = n/N A, откуда n = CN A. Преобразуем произведение sn = sCN A = cl C, где cl = sN A — натуральный молярный показатель поглощения. Его физический смысл — суммарное эффективное сечение поглощения всех молекул одного моля вещества. Если молекулы, поглощающие кванты, находятся в растворителе, который не поглощает свет, то можно (24.6) записать в виде

(24.7)

Эта формула выражает закон Бугера—Ламберта—Вера. В лабораторной практике этот закон обычно выражают через показательную функцию с основанием 10:

(24.8)

Закон Бугера—Ламберта—Бера используют для фотометрического определения концентрации окрашенных веществ. Для этого непосредственно измеряют потоки падающего и прошедшего через раствор монохроматического света (концентрационная колориметрия), однако определенный таким образом коэффициент пропускания Т (или поглощения 1 - Т, см. (24.1)) неудобен, так как он из-за вероятностного характера процесса связан с концентрацией нелинейно [см. (24.8) и рис. 24.2, а ]. Поэтому в количественном анализе обычно определяют оптическую плотность (D) раствора, представляющую десятичный логарифм величины, обратной коэффициенту пропускания,

(24.9)

Рис. 24.2

 

Оптическая плотность удобна тем, что она линейно связана с концентрацией определяемого вещества (рис. 24.2, б).

Закон Бугера—Ламберта—Бера выполняется не всегда. Он справедлив при следующих предположениях: 1) используется монохроматический свет; 2) молекулы растворенного вещества в растворе распределены равномерно; 3) при изменении концентрации характер взаимодействия между растворенными молекулами не меняется (иначе фотофизические свойства вещества, в том числе и значения s и e, будут изменяться); 4) в процессе измерения не происходят химические превращения молекул под действием света; 5) интенсивность падающего света должна быть достаточно низка (чтобы концентрация невозбужденных молекул практически не уменьшалась в ходе измерения). Зависимости s, c, e или D от длины волны света называют спектрами поглощения вещества.

Спектры поглощения являются источниками информации о состоянии вещества и о структуре энергетических уровней атомов и молекул. Спектры поглощения используют для качественного анализа растворов окрашенных веществ.

 

<== предыдущая лекция | следующая лекция ==>
Частные случаи уравнения Менделеева - Клапейрона | Эмиссионный и абсорбционный спектральный анализ, его медицинское применение
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1848; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.