КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Электропроводимость биологических тканей и жидкостей
. Сравнивая напряженность и потенциал поля точечного заряда необходимо отметить, что силовая характеристика убывает быстрее, чем энергетическая. Геометрическое место точек, обладающих одинаковым потенциалом , называют эквипотенциальной поверхностью (на рис. 21 – 23 изображены пунктирными линиями). Эквипотенциальные поверхности не пересекаются. Линии эквипотенциальных поверхностей перпендикулярны силовым линиям электрического поля. Разность потенциалов – это физическая величина численно равная работе, которую совершают силы электрического поля при перемещении единичного положительного заряда из точки поля 1 в 2. , [Δ] = B. Paзность потенциалов называется напряжением: . Связь между характеристиками однородного электрического поля: , [] = , где – разность потенциалов, – расстояние между двумя точками с потенциалами и . Знак “–” в формуле указывает на то, что вектор направлен в сторону убывания потенциала. Проводники – это вещества, которые имеют свободные заряды, способные перемещаться под действием электрического поля. Примеры: плазма крови, лимфа, межклеточная жидкость, спинномозговая жидкость, цитоплазма. Диэлектрики (изоляторы) – это вещества, которые не имеют свободных зарядов, поэтому не проводят электрический ток. Примеры: сухая кожа, связки, сухожилия, костная ткань, клеточная мембрана. Биологические ткани различны по электропроводности, табл. 1. Например, электрическое сопротивление мембран клеток, костной и жировой ткани достаточно велико. Они подобны диэлектрикам. Внутриклеточная жидкость является проводником, так как содержит положительные и отрицательные ионы. Внутри организма ток распространяется в основном по: 1) кровеносным и лимфатическим сосудам; 2) мышцам; 3) оболочкам нервных стволов. Измерение электропроводимости (кондуктометрия) используется: при изучении процессов в клетках и тканях во время изменений физиологического состояния; при исследовании патологических процессов (например, при воспалении увеличивается электрическое сопротивление); для нахождения активных точек рефлексотерапии; для выявления кожно-гальванических реакций, в которых отражаются эмоции, утомляемость и другие состояния организма. В организме нет таких систем, которые были бы подобны катушкам индуктивности, поэтому ткани человека не обладают индуктивностью. Полное сопротивление (импеданс) живой ткани переменному току определяется только омическим (R) и емкостным сопротивлениями (XC): , [Z] = Ом; где С – электрическая емкость, [С] = Ф; – циклическая частота переменного тока, [] = . Омические и емкостные свойства биологических тканей моделируют на основе сочетания параллельного и последовательного соединение элементов (рис. 24):
Рис. 24. Упрощенная эквивалентная схема живой ткани При прохождении переменного тока через живые ткани полное сопротивление ткани увеличивается с уменьшением частоты тока до некоторой максимальной величины Zmax и стремится к некоторому минимальному значению Zmin при увеличении частоты (рис. 25). Z Zmax
Zmin ЧАС Рис. 25. График зависимости импеданса мышцы от частоты переменного тока
Дата добавления: 2014-01-06; Просмотров: 802; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |