КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методи одержання продуцентів вітамінів
Інші амінокислоти. Основні продуценти: Corynebacterium, Brevibacterium. Крім того глютамін отримують культивуванням Flavobacterium ringense. Аланін – р. Pseudomonas. Для виробництва лейцину крім Brevibacterium flavum використовують Br.lactofermentum. Проводяться дослідження щодо створення плаз мідних надпродуцентів Serratia marcescens. Конструюють плазміди і одночасно вносять декілька видів плазмід.
Отримують в промислових масштабах вітаміни: 1. Екстрагують з природної сировини (А, Е) 2. Хімічним синтезом (А, К, В1) 3. Ферментація (В12, В6, В2, β-каротин) 4. Комбінований синтез (хімічні + мікробіологічні стадії) 1. Вітаміни групи В синтезуються дріжджами р. Saccharomyces, Candida, грибами Aspergillus, Penicillium, Fusarium, Cladosporium, бактеріями р. Agrobacterium, актиноміцетами, водоростями. · Рибофлавін (В2). Продуцент всі вищезазначені групи м/о. Найбільш досліджені і застосовуються: гриб Eremotherium ashbyii, мутанти Saccharomyces cerevisiae. Властивість до суперпродукування В2 у Eremotherium ashbyii нестійка. Вбудовування проводиться шляхом ампліфікації генів рибофлавінового оперону. Крім того проводиться мутагенез в напрямку мутацій, що порушують регуляторні механізми і відключають пригнічення синтезу рибофлавіну. Отримані трансформанти B.subtilis, здатний за 25 – 35 годин виділяти 2,5 – 4,5 г/л рибофлавіну. Особливість культивування: в середовищі обов’язково повинна бути меляса, що містить речовини, що є попередниками В2. Хімічний синтез з диметиланіліну та рибози. Рибозу отримують мікробіологічним шляхом.
ЛК_7 (15.10) Кобаламіни Кобаламіни (В12) отримують методом хімічного синтезу, але він вимагає проведення 37 послідовних стадій, тому в промисловості використовують тільки б/т метод. Основні продуценти – штами, що належать до роду Propionibacterium. З природних отримують штами, що дають від 1 до 8,5 мг/л В12. За допомогою мутагенезу був отрианий P.shermanii, який давав 58 мг/л. З P.technicum був виділений ген, який вбудовували в плазміду рВR322 і далі плазміду вносили в E.coli. Крім пропіоновокислих бактерій, використовують Psevdomones. Наприклад, з виділеного із навколишнього середовища Psevdomones denitrificans, за допомогою селекції і мутагенезу отримують промисловий штам. Використовують також гени, виділені з Bacillus megaterium. З нього виділяють 11 генів, що беруть участь у синтезі В12. Вітамін А (каратиноїди) Продуцентами є дріжджі, міцеліальні гриби та одноклітинні зелені водорості. Застосовують селекцію і рідко мутагенез. Генетичну маніпуляцію не здійснюють. Вітамін С Технологія отримання L-аспаргінової кислоти включає 5 етапів: 1) каталітичне відновлення D-глюкози в D-сорбітол; 2) м/б перетворення D-сорбітолу в L-сорбозу, для цього використовують сорбітолдегідрогеназу, що отримують з Acetobacter suboxydans; 3) хімічне окислення L-сорбози в 2-кето-L-гулонову кислоту (2-КLG); 4) хімічне перетворення 2-КLG в єнольну форму з одночасним утворенням натрієвої солі; 5) 2-КLGNa+кислота= L-аскорбінова кислота. Було визначено, що 2-КLG можна отримати м/б способом без застосування хімічного синтезу, при цьому одна група бактерій- Acetobacter, Gluconobacter, перетворює глюкозу в 2,5-дикето-D-глюконову кислоту, а інші м/о, наприклад корінебактерії, бревібактерії, артробактерії, синтезують фермент 2,5-DKG-(дикетоглюконова кислота) редуктазу, що перетворює 2,5-DKG в 2-КLG. Основна проблема – різні вимоги до культивування, тому з корінебактерії виділили ген 2,5-DKG-редуктази, секвенували його, замінили систему початкової транскрипції, трансляції і отриману конструкцію ввели в E.coli. В результаті налагодився хороший синтез 2,5-DKG-редуктази. Далі провели ще одне клонування з E.coli в Erwinia herbicola, отримана культура здійснювала перетворення глюкози в 2,5-DKG в переплазматичному просторі, а потім 2,5-DKG перетворювалась в 2-КLG за допомогою чужерідного фермента уже в цитоплазмі. Далі застосовувався мутагенез, при якому було замінено глутамін на аргінін в 2,5-DKG-редуктазі в одному положенні, гліцинові залишки на аланінові в двох тположеннях. В результаті отримали більш термостабільну форму ферменту. Біосинтез антибіотиків З 1920 року почалось виробництво антибіотиків. На даний час відомо більше 10 тисяч речовин з антибіотичною дією. Тільки невелика кількість використовується в якості ЛЗ, що пов’язано з токсичністю, широким спектром дії. Найбільш часто антибіотики, які є ЛЗ, виробляються з стрептоміцетів. Перші продуценти – актиноміцети або стрептоміцети. Одна з особливостей – міцеліальний ріст, тому у випадку трансформації спочатку руйнують клітинну стінку (найчастіше ПЕГ) і отримують окремі протопласти, а потім проводять трансформацію. Після цього висівають на середовище в умови відновлення клітинної стінки, а потім пересівають на середовище для відбору трансформантів. Біосинтез 1 антибіотику стрептоміцетом – це 10-30 ферментних реакцій, тому клонування генів – складний процес. Клонування генів біосинтезу даного антибіотика відбувається спочатку за допомогою мутагенезу (отримують та відбирають мутантів, що втратили здатність до синтезу антибіотика), далі поводять трансформацію цих мутантів ДНК, яка отримана з білка клонів дикого типу, що здатні до біосинтезу, потім відбирають трансформанти, здатні др синтезу антибіотика (ця здатність була відновлена за рахунок комплементарної ДНК). Найчастіше в якості комплементарної виступає плазмідна ДНК. Таку трансформацію і дослідження застосовують тільки у випадку, коли всі гени синтезу антибіотика знаходяться разом. Робота з стрептоміцетами спрямована не тільки на збільшення продуктивності, але й на створення антибіотиків. Наприклад, відома плазміда, що несе послідовність ДНК, яка має всі гени біосинтезу антибіотика актинородини з ацетату. Вона наявна в Streptomyces colelicolor. Таку плазміду або її частини з відповідними генами вводили в інший штам A.suboxydans i S.violaceoruber – подуценти мідерміцину або гранатицину та дигідрогранатицину. Всі ці антибіотики є індикаторами кислотності (при різних рН різний колір, що сприяє легкому відбору трансформуючих штамів. Таким чином, були отримані штами S.violaceoruber, які несли плазміду і синтезували новий антибіотик – дигідрограгранатиродин і медерродин. Структурно, як вихідні антибіотики, так і нові, дуже схожі і їх можна вважати належними до 1 групи. Ще один приклад: отримання полікетидних антибіотиків. Основні продуценти – актиноміцети. Синтезуються також грибами та рослинами, але не мають промислового значення. Існують 2 класи ферментів, що відповідають за їх синтез: 1) синтази, що каталізують біосинтез ароматичних полікетидів; 2) синтази, що здійснюють конденсацію ароматичних полікетидів (реакцію полімеризації). Генноінженерними методами було визначено гени цих ферментів, а потім були проведені різні модифікації цих генів, наприклад, видалення ДНК, що кодує β-кеторедуктазу, що пригнічує синтез полікетидних антибіотиків. Така делеція призводила до накопичення промислового продукту і піддією інших ферментів та мутагенезу утворювався інший полікетидний антибіотик – еритроміцин. Проводять експерименти стосовно визначення, які гени відповідають за кожен з ферментів, з метою спрямованого отримання певних хімічних структур нового антибіотика. Вважають, що 1 антибіотик кодується трьома і більше генами (мінімальна кількість – полікетидсинтаза, тому оновні модифікації здійснюють з нею).
ЛК_8 (22.10) Продуценти: гриби р. Penicilium, Aspergilus (P. Chrysogemun, P. notatum). Вміст пеніциліну в культуральній рідині 50·103 од/мл. До пеніциліну сформулювалась велика кількість стійких штамів. Ця стійкість обумовлена плазмідами, найбільш поширеним є механізм розщеплення пеніциліну β -лактазами. Тому створюють напівсинтетичні похідні пеніциліну, застосовують лікарські препарати, що містять додаткову клауланову кислоту, що є інгібіторами β -лактаз. Клаулонова кислота схожа структурно з пеніциліном (β -лактан) і більше споріднена до β -лактаз. Продуцент Streptim. clavuligeru s. Основа для виробництва напівсинтетичних пеніцилінів - природні пеніциліни без модифікації. Напівсинтетичний пеніцилін мікробіологічними методами: · Біосинтез пеніциліну за допомогою мічених сполук; · Без допомоги хімічних сполук, продуценти отримуються в результаті генних мутацій; · Стимулювання біосинтезу антибіотиків в присутності активатора (натрієва сіль полі-2,5-дигідроксифенилен-4-тіосульфокислоти). Штами отримують селекцією та мутагенезом. Генетичні модифікації спрямовані на збільшення ступеня активації · Біотехнологічне отримання пеніциліну та хімічна модифікація. Підвищення ефективності синтезу антибіотиків грибами і Streptomices: 1. Збільшення копійності генів; 2. Вбудовування сильних промоторів, частіше бактерійних; 3. Покращення біосинтетичних властивостей за рахунок впливу на лімітуючі фактори. Продуценти актиноміцети - лімітуючим є кількість О2, що доступний для клітини. Для вирішення цієї проблеми було виділено ген, що кодує гемоглобін подібний переносник О2. Ген з бактерії Vetreoscilla, введено в плазмідний вектор і в стрептоміцет. Промотором була конструкція, що характерна для стрептоміцетів. Отримані трансформанти культивувались в середовищі з низьким О2, швидкість росту збільшилась і рівень синтезу актинородину збільшилась в 10 разів. 4. Створення нового шляху синтезу антибіотику Було сконструйовано плазміду, що містила ген з зміненим ланцюжком біосинтезу цефалоспорину. Цю плазміду вбудували в гриб Acremonium chrysogenum, інший шлях скорочував шлях утворення антибіотиків і зменшував кількість побічних продуктів. Гени, що використовувались при створенні плазміди були взяті з грибів Fusarium solari, Pseudomonas diminuta.
Дата добавления: 2014-01-07; Просмотров: 612; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |