Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример модификации фильтра МНК 2-го порядка

Передаточная функция: выражение (2.1.7). Частотная характеристика (нормировку можно снять):

H(w) = -3exp(2jw)+12exp(jw)+17+12exp(-jw)-3exp(-2jw).

Замена концевых коэффициентов {значение 3} на параметр b и упрощение:

H(w) = 17+24 cos(w)+2b cos(2w).

При w = p: H(p) = 17-24+2b = 0. Отсюда: b = 3.5

Новая частотная характеристика (с приведением коэффициентов к целым числам):

H(w) = 68+96 cos(w)+14 cos(2w). Сумма коэффициентов при w = 0: H(0) = 68+96+14 = 178.

Нормированная частотная характеристика: H(w) = (68+96 cos(w)+14 cos(2w))/178.

Коэффициенты фильтра: hn = {(7,48,68,48,7)/178}.

Пример- задание: Модифицировать 7, 9 и 11-ти точечные сглаживающие фильтры МНК 2-го порядка.

Контроль: 7hn = {(1,6,12,14,12,6,1)/52}. 9hn = {(-1,28,78,108,118,108,78,28,-1)/548}.

11h n = {(-11,18,88,138,168,178,168,138,88,18,-11)/980}.

Сравнительные графики частотных характеристик модифицированных фильтров МНК второго порядка приведены на рисунке 2.1.8.

Фильтры МНК третьего порядка по своим частотным характеристикам эквивалентны фильтрам второго порядка.

Фильтры МНК 4-го порядка. Расчет по аналогичной методике сглаживающих фильтров МНК 4-ой степени дает следующие результаты:

h0-3 = (131,75,-30,5)/231,

h0-4 = (179,135,30,-55,15)/429,

h0-5 = (143,120,60,-10,-45,18)/429,

h0-6 = (677,600,390,110,-135,-198,110)/2431.

На рис. 2.1.12 приведено сопоставление частотных характеристик одноразмерных фильтров МНК 1-го, 2-го и 4-го порядка.

В целом, по сглаживающим фильтрам МНК можно сделать следующие выводы:

1. Повышение порядка фильтра увеличивает степень касания частотной характеристикой уровня коэффициента передачи Н=1 на частоте w = 0 и расширяет полосу пропускания фильтра.

 

Рис. 2.1.12. Сглаживающие фильтры МНК.

2. Увеличение количества членов фильтра приводит к сужению полосы пропускания и увеличивает крутизну ее среза.

3. Модификация фильтров уменьшает осцилляции передаточной функции в полосе подавления сигналов.

Совместное изменение этих параметров позволяет подбирать для сглаживания данных такой фильтр МНК, частотная характеристика которого наилучшим образом удовлетворяет частотному спектру сигналов при минимальном количестве коэффициентов фильтра.

<== предыдущая лекция | следующая лекция ==>
Сглаживающие фильтры и фильтры аппроксимации /л24/ | Разностные операторы /л24/
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 412; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.