КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Оценка с помощью интервалов
Смысл оценки параметров с помощью интервалов заключается в нахождении интервалов, называемых доверительными, между границами которых с определенными вероятностями (доверительными) находятся истинные значения оцениваемых параметров. Вначале остановимся на определении доверительного интервала для среднего арифметического значения измеряемой величины. Предположим, что распределение результатов наблюдений нормально и известна дисперсия . Найдем вероятность попадания результата наблюдений в интервал . Согласно формуле (29)
Это означает, что истинное значение Q измеряемой величины с доверительной вероятностью находится между границами доверительного интервала . Половина длины доверительного интервала называется доверительной границей случайного отклонения результатов наблюдений, соответствующей доверительной вероятности Р. Для определения доверительной границы (при выполнении перечисленных условий) задаются доверительной вероятностью, например Р =0.95 или Р =0.995 и по формулам
Полученный доверительный интервал, построенный с помощью среднего арифметического результатов n независимых повторных наблюдений, в раз короче интервала, вычисленного по результату одного наблюдения, хотя доверительная вероятность для них одинакова. Это говорит о том, что сходимость измерений растет пропорционально корню квадратному из числа наблюдений. Половина длины нового доверительного интервала
Теперь рассмотрим случай, когда распределение результатов наблюдений нормально, но их дисперсия неизвестна. В этих условиях пользуются отношением
Плотность распределения этой дроби, впервые предсказанного Госсетом, писавшим под псевдонимом Стьюдент, выражается следующим уравнением:
Величины , вычисленные по формулам (40) и (41), были табулированы Фишером для различных значений доверительной вероятности Р в пределах 0.10 - 0.99 при В табл.П.5 приведены значения для наиболее часто употребляемых доверительных вероятностей Р. Таким образом, с помощью распределения Стьюдента по формуле (41) может быть найдена вероятность того, что отклонение среднего арифметического от истинного значения измеряемой величины не превышает , например и т.д. Итог измерений записывается в виде
Пример. По результатам пяти наблюдений была найдена длина стержня. Итог измерений составляет L =15.785 мм, =0.005 мм, причем существуют достаточно обоснованные предположения о том, что распределение результатов наблюдений было нормальным. Требуется оценить вероятность того, что истинное значение длины стержня отличается от среднего арифметического из пяти наблюдений не больше чем на 0.01 мм. Из условия задачи следует, что имеются все основания для применения распределения Стьюдента. Вычисляем значение дроби Стьюдента
. и : . Для =3 вероятность составляет
. Для =1 доверительная вероятность составляет приблизительно 0.62, поэтому итог измерений можно представить также в виде
Пример. В условиях предыдущей задачи найти доверительную границу погрешности результата измерений для доверительной вероятности . По данным табл.П.5 при находим и, следовательно, доверительная граница: мм.
При , а практически уже при распределение Стьюдента переходит в нормальное распределение и
В тех случаях, когда распределение случайных погрешностей не является нормальным, все же часто пользуются распределением Стьюдента с приближением, степень которого остается неизвестной. Кроме того, на основании центральной предельной теоремы теории вероятностей можно утверждать, что при достаточно большом числе наблюдений распределение среднего арифметического как суммы случайных величин будет сколь угодно близким к нормальному. Тогда, заменяя дисперсию ее точечной оцен-кой [см.п.4.4. Нормальное распределение], можно для оценки доверительной гра-ницы погрешности результата воспользоваться равенством (35). Число наблюдений n, при котором это становится возможным, зависит, конечно, от распределения случайных погрешностей. Соотношения (38) показывают, что итог измерения не есть одно определенное число. В результате измерений мы получаем лишь полосу значений измеряемой величины. Смысл итога измерений, например, L =20.00±0.05 заключается не в том, что L = 20.00, как для простоты счи-тают, а в том, что истинное значение лежит где-то в границах от 19.95 до 20.05. К тому же нахождение внутри границ имеет некоторую вероятность, меньшую, чем единица, и, следовательно, нахождение вне границ не исключено, хотя и может быть очень маловероятным. Теперь найдем доверительные интервалы для дисперсии и среднеквадратического отклонения результатов наблюдений. Если распределение результатов наблюдений нормально, то отношение
Кривые плотности -распределения при различных значениях k, вычисленные по формуле (44), представлены на рис.9. Значения , соответствующие различным вероятностям Р того, что отношение (43) в данном опыте будет меньше , представлены в табл.П.6 приложения для различных вероятностей Р и чисел k степеней свободы. Пользуясь этой таблицей, можно найти доверительный интервал для оценки дисперсии результатов наблюдений при заданной доверительной вероятности. Этот интервал строится таким образом, чтобы вероятность выхода дисперсии за его границы не превышала некоторой малой величины q, причем вероятности выхода за обе границы интервала были бы равны между собой и составляли соответственно q /2 (рис.10). Границы и такого доверительного интервала находят из равенства
Теперь, зная границы доверительного интервала для отношения , запишем доверительный интервал для дисперсии:
Пример. Даны результаты двадцати измерений длины мм детали (табл.3). Таблица 3
В качестве оценки математического ожидания длины детали принимаем ее среднее арифметическое мм. Точечная оценка среднеквадратического отклонения результатов наблюдений составляет: мм.
Границы доверительного интервала для среднеквадратического отклонения результатов наблюдений находим по формуле (47):
В табл.П.6 приведены значения только при числах степеней свободы от 1 до 30. При k >30 можно пользоваться приближенной формулой
где определяется из условия по табл.П.3, в которой помещены значения интегральной функции нормированного нормального распределения. Тогда границы доверительного интервала для среднеквадратического отклонения результатов наблюдений при доверительной вероятности вычисляются по формулам (47) при значениях , равных
Так, если в условиях предыдущей задачи среднеквадратическое отклонение определено на основании измерений, то для из табл.П.3 находим:
Дата добавления: 2014-01-07; Просмотров: 517; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |