Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Регулировка и градуировка средств измерений




Классы точности средств измерений

Класс точности – это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. Классы точности регламентируются стандартами на отдельные виды средств измерения с использованием метрологических характеристик и способов их нормирования, изложенных в предыдущих главах.

Стандарт не распространяется на средства измерений, для которых предусматриваются раздельные нормы на систематическую и случайные составляющие, а также на средства измеререний, для которых нормированы номинальные функции влияния, а измерения проводятся без введения поправок на влияющие величины. Классы точности не устанавливаются и на средства измерений, для которых существенное значение имеет динамическая погрешность.

Для остальных средств измерений обозначение классов точности вводится в зависимости от способов задания пределов допускаемой основной погрешности.

Пределы допускаемой абсолютной основной погрешности могут задаваться либо в виде одночленной формулы

, (90)


либо в виде двухчленной формулы

, (91)


где и выражаются одновременно либо в единицах измеряемой величины, либо в делениях шкалы измерительного прибора.

Более предпочтительным является задание пределов допускаемых погрешностей в форме приведенной или относительной погрешности.

Пределы допускаемой приведенной основной погрешности нормируются в виде одночленной формулы

, (92)


где число (n = 1, 0, -1, -2…).

Пределы допускаемой относительной основной погрешности могут нормироваться либо одночленной формулой

, (93)


либо двухчленной формулой

, (94)


где – конечное значение диапазона измерений или диапазона значений воспроизводимой многозначной мерой величины, а постоянные числа q, с и d выбираются из того же ряда, что и число р.

В обоснованных случаях пределы допускаемой абсолютной или относительной погрешности можно нормировать по более сложным формулам или даже в форме графиков или таблиц.

Средствам измерений, пределы допускаемой основной погрешности которых задаются относительной погрешностью по одночленной формуле (93), присваивают классы точности, выбираемые из ряда чисел р и равные соответствующим пределам в процентах. Так для средства измерений с класс точности обозначается .

Если пределы допускаемой основной относительной погрешности выражаются двухчленной формулой (94), то класс точности обозначается как c/d, где числа с и d выбираются из того же ряда, что и р, но записываются в процентах. Так, измерительный прибор класса точности характеризуется пределами допускаемой основной относительной погрешности

.

Классы точности средств измерений, для которых пределы допускаемой основной приведенной погрешности нормируются по формуле (92), обозначаются одной цифрой, выбираемой из ряда для чисел р и выраженной в процентах. Если, например, , то класс точности обозначается как 0.5 (без кружка).

Классы точности обозначаются римскими цифрами или буквами латинского алфавита для средств измерений, пределы допускаемой погрешности которых задаются в форме графиков, таблиц или сложных функций входной, измеряемой или воспроизводимой величины. К буквам при этом допускается присоединять индексы в виде арабской цифры. Чем меньше пределы допускаемой погрешности, тем ближе к началу алфавита должна быть буква и тем меньше цифра. Недостатком такого обозначения класса точности является его чисто условный характер.

В заключение данного раздела следует отметить, что никакое нормирование погрешностей средств измерений само по себе не может обеспечить единства измерений. Для достижения единства измерений необходима регламентация самих методик проведения измерений.

Используя методы теории точности, всегда можно найти такие допуски на параметры элементов измерительного прибора, соблюдение которых гарантировало бы и без регулировки получение их с погрешностями, меньшими допустимых пределов. Однако во многих случаях эти допуски оказываются настолько малы, что изготовление прибора с заданными пределами допускаемых погрешностей становится технологически неосуществимым. Выйти из положения можно двумя путями: во-первых, расширить допуски на параметры некоторых элементов приборов и ввести в его конструкцию дополнительные регулировочные узлы, способные компенсировать влияние отклонений этих параметров от их номинальных значений, а во-вторых, осуществить специальную градуировку измерительного прибора.

В большинстве случаев в измерительном приборе можно найти или предусмотреть такие элементы, вариация параметров которых наиболее заметно сказывается на его систематической погрешности, главным образом погрешности схемы, аддитивной и мультипликативной погрешностях.

В общем случае в конструкции измерительного прибора должны быть предусмотрены два регулировочных узла: регулировка нуля и регулировка чувствительности. Регулировкой нуля уменьшают влияние аддитивной погрешности, постоянной для каждой точки шкалы, а регулировкой чувствительности уменьшают мультипликативные погрешности, меняющиеся линейно с изменением измеряемой величины. При правильной регулировке нуля и чувствительности уменьшается влияние погрешности схемы прибора. Кроме того, некоторые приборы снабжаются устройствами для регулировки погрешности схемы.

После регулировки нуля, т.е. устранения аддитивной погрешности, систематическая погрешность обращается в нуль на нижнем пределе измерения, а в диапазоне измерения принимает значения, являющиеся случайной функцией измеряемой величины.

Более высокими метрологическими характеристиками обладают измерительные приборы, имеющие узел регулировки чувствительности. Наличие такой регулировки позволяет поворачивать статическую характеристику, что открывает большие возможности для снижения погрешности схемы и, главным образом, мультипликативной погрешности. Так, одновременной регулировкой нуля и чувствительности можно свести систематическую погрешность к нулю сразу в нескольких точках шкалы прибора. От правильности выбора таких точек зависят значения оставшихся после регулировки систематических погрешностей в других точках шкалы.

Теория регулировки должна дать ответ на вопрос, какие точки шкалы следует выбрать в качестве точек регулировки. Однако общего решения этой задачи еще не найдено. Трудность решения усугубляется тем, что положение этих точек на шкале определяется не только схемой и конструкцией прибора, но и технологией изготовления его элементов и узлов.

На практике в качестве точек регулировки принимают начальное и конечное, среднее и конечное или начальное, среднее и конечное значения измеряемой величины в диапазоне измерения. При этом значения систематической погрешности близки к минимально возможным, поскольку в действительности точки регулировки часто располагаются близко к началу, середине или концу шкалы.

Таким образом, под регулировкой средств измерения понимается совокупность операций, имеющих целью уменьшить основную погрешность до значений, соответствующих пределам ее допускаемых значений путем компенсации систематической составляющей погрешности средств измерений, т.е. погрешности схемы, мультипликативной и аддитивной погрешностей.

Градуировкой называется процесс нанесения отметок на шкалы средств измерений, а также определение значений измеряемой величины, соответствующих уже нанесенным отметкам для составления градуировочных кривых или таблиц.

Различают следующие способы градуировки.

1. Использование типовых шкал. Для подавляющего большинства рабочих и многих образцовых приборов используют типовые шкалы, которые изготовляются заранее в соответствии с уравнением статической характеристики идеального прибора. Если статическая характеристика линейна, то шкала оказывается равномерной. При регулировке параметрам элементов прибора экспериментально придают такие значения, при которых погрешность в точках регулировки становится равной нулю.

2. Индивидуальная градуировка шкал. Индивидуальную градуировку шкал осуществляют в тех случаях, когда статическая характеристика прибора нелинейна или близка к линейной, но характер изменения систематической погрешности в диапазоне измерения случайным образом меняется от прибора к прибору данного типа (например, вследствие разброса нелинейности характеристик чувствительного элемента) так, что регулировка не позволяет уменьшить основную погрешность до пределов ее допускаемых значений.

Индивидуальную градуировку проводят в следующем порядке.

На предварительно отрегулированном приборе устанавливают циферблат с еще не нанесенными отметками. К измерительному прибору подводят последовательно измеряемые величины нескольких, наперед заданных или выбранных значений. На циферблате наносят отметки, соответствующие положениям указателя при этих значениях измеряемой величины, а расстояния между отметками делят на равные части.

При индивидуальной градуировке систематическая погрешность уменьшается во всем диапазоне измерения, а в точках, полученных при градуировке она достигает значения, равного погрешности обратного хода.

3. Градуировка условной шкалы. Условной называется шкала, снабженная некоторыми условными равномерно нанесенными делениями, например, через миллиметр или угловой градус. Градуировка шкалы состоит в определении при помощи образцовых мер или измерительных приборов значений измеряемой величины. В результате определяют зависимость числа делений шкалы, пройденных указателем от значений измеряемой величины. Эту зависимость представляют в виде таблицы или графика. Если необходимо избавиться и от погрешности обратного хода, градуировку осуществляют раздельно при прямом и обратном ходе.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 791; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.