Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Имитационный алгоритмический способ

Имитационный способ представления задачи 1

Аналитический неявный способ

В данной формулировке за счёт использования знака уравнивания получена связь переменных f (T, V 1, V 2, D, S) = 0 в виде системы уравнений. Устанавливая знак «?» на различные переменные, можно формулировать при необходимости целый ряд произвольных задач, например так:

T1 · (V1 + V2) = D
S1 = V1 · T1
T1 =?

 

 

При этом задачи формулируются пользователем и не предусматриваются специально моделировщиком. То есть модель имеет вид объекта. Мы получили более качественную модель. Идеализация её велика, но за счёт неявной формы записи появилась возможность изменения задачи, изучения на ней целого ряда проблем.

При имитационном способе решения обязательным является наличие некоего счётчика, который позволяет моделировать процесс по шагам или по деталям процесса.

Повторяя пошагово расчёт в цикле, на каждом этапе работы алгоритма будем имитировать течение процесса (рис. 1.19). Обратите внимание, что процесс берётся не в целом, а как бы в деталях, по шагам. Переменная t является координатой, а значит, отслеживается счётчиком с шагом h. Идея имитации — продвигать пешехода и велосипедиста на величину V · h на каждом такте, где h — достаточно малая величина. Поскольку мы рассматриваем множество актов движения по отдельности, можно по ходу менять все переменные модели, например, V. Если путь пройден большой (S 1), то можно устроить привал (V = 0) на некоторое время. Остановка процесса имитации определяется суммой путей, пройденных велосипедистом и пешеходом навстречу друг другу, и сравнением её с расстоянием D.

 

Рис. 1.19. Блок-схема решения задачи о встрече
(имитационный алгоритмический способ)

На формально-математическом языке алгоритм выглядит так, как показано ниже.

t:= t + h · e
S1:= S1 + V1 · h · e
S2:= S2 + V2 · h · e
e:= ed(D – (S1 + S2))
f:= not(e)
stop(f)

 

 

e — вспомогательный флаг;
f — флаг, показывающий, был ли пройден к текущему моменту t весь путь или нет;
ed(x) — единичная функция: ed(x) = 1 при x ≥ 0, иначе ed(x) = 0;
stop(z) — функция останова вычислений при z > 0.

 

<== предыдущая лекция | следующая лекция ==>
 | Имитационный геометрический способ
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 296; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.021 сек.