КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Имитационный критериальный способ
Этот способ — ещё один шаг к усложнению модели и приближению её к реальным условиям. Если во всех предыдущих случаях скорость V была известна, то теперь она — непредсказуема, даже статистически, что чаще всего и наблюдается в реальных условиях. Скорость V объекта принимается из некоторых дополнительных моделей. Причём эти модели могут быть с обратными связями. Например, скорость может зависеть от обстановки, степени достижения цели, плана, целесообразности поведения, знания местности, желания двигаться (психологический мотив). Такая постановка ведёт к адаптивным системам и системам искусственного интеллекта. Например, если объект (пешеход) имеет возможность осмотреть местность с обзорной башни, то он может заранее просчитать свой путь и затем следовать ему. Без обзорной башни пешеход может зайти в безвыходный тупик или бесконечно долго перебирать варианты пути. Для адаптивных систем вводится критерий для оценки перспективности выбора направления движения. Итак, подведём итог. Модель — способ замещения реального объекта, используемый для его исследования, когда натуральный эксперимент невозможен, дорог, опасен, долговременен. Примеры. Поскольку исследование Луны небезопасно для человека, для этой цели используют луноход как модель исследователя; поскольку реальные эксперименты над экономикой страны дороги по своим последствиям, то используют математические модели экономики для изучения последствий управляющих решений; поскольку процесс обработки металлов взрывом скоротечен во времени, то его изучают на модели в увеличенном масштабе времени, а процесс коррозии — в уменьшенном; атом изучается в увеличенном масштабе пространства, а космогонические процессы — в уменьшенном масштабе пространства; поскольку при проектировании объекта его попросту не существует, то исследование будущих свойств объекта ведётся на модели. Модель несёт системообразующую и смыслообразующую роль в научном познании. На модели изучают неизвестные свойства предметов. Модель стремится как можно более ярко выразить структуру явления, его главные аспекты. Модель является концентрированным выражением сущности предмета или процесса, выделяя только его основные черты. Знания — это модели окружающего мира, фиксируемые человеком в его мозгу или на технических носителях. Модели обладают повышенной наглядностью, выделяя главные аспекты сущности, и активно используются в процессах познания и обучения. Человек, решая, как ему поступить в той или иной ситуации, всегда пытается представить себе последствия решения, для этого он проигрывает ситуацию, представляет её себе мысленно, строя модель в голове. Компьютер является усилителем для производства данной деятельности, инструментом информационной технологии. Компьютерные модели ускоряют процесс исследования, делают его более точным. Алгоритмы — знания, выстраиваемые человеком (или, шире, разумным существом) в цепочку так, чтобы соединить исходное состояние с желаемым, целью; это один из вариантов ряда мероприятий, шагов, приводящих к цели. Таким образом, модели — это основа разумной мыслительной деятельности; модели играют роль базиса, а моделирование — роль инструмента для прогнозирования. Процесс моделирования состоит из трёх стадий: формализации (переход от реального объекта к модели), моделирования (исследование и преобразования модели), интерпретации (перевод результатов моделирования в область реальности). Модель есть зависимость F между входом X и выходом Y. Модель отражает закономерность Y = F (X). Часто модель является законом. Модель верна в рамках допущенных при её построении гипотез. Поэтому модель ограничена некоторой областью и адекватна в ней. Набор моделей образует научную дисциплину (механика, физика, горное дело и т. д.) Модель может быть расширена путём учёта в ней дополнительных параметров. Тогда область её применения становится шире. Объект может быть представлен в виде аналитической или имитационной модели. Аналитическое представление подходит лишь для очень простых и сильно идеализированных задач и объектов, которые, как правило, имеют мало общего с реальной (сложной) действительностью, но обладают высокой общностью. Аналитические модели обычно применяют для описания фундаментальных свойств объектов (поэтому ими так широко пользуется теоретическая физика), так как фундамент прост по своей сути. Сложные объекты редко удаётся описать аналитически. Имитационное моделирование позволяет разлагать большую модель на части (объекты, «кусочки»), которыми можно оперировать по отдельности, создавая другие, более простые или, наоборот, более сложные модели. Таким образом, имитационное моделирование тяготеет к объектно-ориентированному представлению, которое естественным образом описывает объекты, их состояние, поведение, а также взаимодействие между ними. Имитационную модель можно постепенно усложнять и усложнять; аналитический способ этого не допускает или допускает, но с большими ограничениями. Модель может быть соединена с другими моделями. Математически это означает совместное решение моделей (пересечение) и наложение тождеств на связываемые переменные. При связывании модели образуют систему, которая имеет определённую структуру (вложенную, параллельную, последовательную, смешанную, с обратными связями и т. д.) Если к построенной модели добавить вопрос, то с помощью неё можно решить задачу, получить ответ, который заранее не очевиден. Если ответ заранее очевиден, то модель не строят. Обычно одна и та же модель годится для решения множества задач. Решая задачи, человек обычно строит модели в своей голове и оживляет (интерпретирует) их там же или на искусственном носителе (в среде моделирования). Повторим: модель + вопрос + дополнительные условия = задача. В виде условий могут быть любые дополнительные выражения: равенства, присваивания начальных данных, неравенства, цели, функционалы и т. д., имеющие смысл ограничений, условий, дополнительных связей. В виде вопроса может служить одна (или несколько) из неизвестных переменных. Задача доопределяет свободные переменные модели, сужает область возможных решений. Задачи, решаемые на модели, делятся на прямые и обратные. Прямые задачи по заданному X находят Y путём подстановки X в уравнение Y = F (X). Обычно такие задачи называют задачами анализа. Обратные задачи по заданному Y находят X путём нахождения обратной функции F –1 и подстановки X = F –1(Y). Обычно их называют задачами синтеза. Если найти обратную функцию F –1 в явном виде затруднительно, то составляют вычислительные схемы для численного определения X. Часто к этому виду приводятся задачи управления объектами. Ещё одной специфической задачей является нахождение по заданным X и Y зависимости F или её коэффициентов. Это задача построения (или настройки) модели.
Дата добавления: 2014-01-07; Просмотров: 281; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |