Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Цепь дыхательных ферментов




Глиоксилатный цикл.

У многих растений, синтезирующих в качестве запасных веществ жиры, происходит дополнительный к циклу Кребса глиоксилатный цикл.

В этом процессе жирные кислоты сначала активируются в наружной митохондриальной мембране путем этерификации с образованием коферментА-эфиров. Эти эфиры превращаются затем в эфиры карнитина, которые могут проходить сквозь внутреннюю митохондриальную мембрану и попадать в матрикс, где снова превращаются в КоА-эфиры. Последовательное отщепление молекул ацетилКоА от КоА-эфиров жирных кислот называется b-окислением.

В глиоксилатном цикле ацетилКоА, также как и в цикле Кребса, вступает в реакцию с щавелевоуксусной кислотой, образуя лимонную кислоту, но в цепи дальнейших превращений разлагается на четырехуглеродное соединение (янтарную кислоту), которая уходит в цикл Кребса, и глиоксилевую кислоту, которая, соединяясь со второй молекулой ацетилКоА, образующегося при b-окислении жирной кислоты, превращается в щавелевоуксусную кислоту.

Физиологический смысл глиоксилатного цикла состоят в дополнительном пути разложения жиров и образовании ряда разнообразных промежуточных соединений, играющих важную роль в биохимических реакциях.

Продукты разложения уксусной кислоты, образующиеся в матриксе митохондрий, в дальнейшем преобразуются различными путями. Углекислый газ перемещается в виде бикарбонат-иона в цитоплазму, где либо выделяется, либо вступает в другие биохимические процессы. Ионы водорода перемещаются в помощью дыхательных ферментов на кристы митохондрии, где постепенно переносятся на акцептор - молекулярный кислород.

Этот процесс переноса и является третьим этапом дыхания, осуществляется цепью специфических ферментов, в состав которых входят, в основном, гемсодержащие белки. Это цитохромы и флавинсодержащие ферменты, в состав которых входит железо, легко переходящее из окисленной формы (Fe3+) в закисную (Fe2+). Перенос электронов по цепи ферментов проходит по мере убывания окислительно-восстановительного потенциала, поэтому не происходит неэффективного выброса энергии, которая по мере перехода с одного фермента на другой запасается в виде АТФ (при фосфорилировании АДФ). Конечной стадией этого этапа является перенос ионов водорода на молекулярный кислород и образование второго конечного продукта дыхания - воды.

Физиологический смысл цепи дыхательных ферментов состоит в постепенном транспорте электронов, что позволяет клетке запасти максимально много молекул АТФ, то есть энергии.

Процессы, происходящие на третьем этапе дыхания, были теоретически обоснованы Митчеллом в 1961 году. Предлагаемая им хемиоосмотическая гипотеза основана на том, что энергия окисления субстрата (АН2) используется для образования электрохимического потенциала ионов водорода по обе стороны внутренней мембраны митохондрий и на векторном перемещении электронов через мембрану как движущей силе в реакции энергетического сопряжения.

Согласно гипотезе Митчелла дыхание и фосфорилирование связаны между собой через посредство электрохимического потенциала и ионов водорода на митохондриальной мембране. Функционирование дыхательной цепи, локализованной во внутренней митохондриальной мембране приводит к накоплению ионов водорода по одну сторону мембраны и образованию ионов гидроксила по другую. При этом снаружи остаются два иона водорода и окисленный субстрат, а на внутреннюю сторону передаются два электрона по дыхательной цепи, встроенной в толщу мембраны, соответствующему акцептору водорода, который затем присоединяет два иона водорода из водной фазы митохондриального матрикса. Ионы водорода сообщают внешней поверхности мембраны положительный заряд, а электроны, перенесенные на внутреннюю поверхность, заряжают ее отрицательно. В результате между двумя поверхностями мембраны возникает разность потенциалов. передвижение протонов водорода с наружной стороны мембраны к внутренней рассматривается как процесс, сопряженный с присоединением остатков фосфата к АДФ и образованием АТФ.

Кроме электрического поля мембрана имеет градиент концентрации ионов фодорода. Эти два градиента - электрический и концентрационный - и являются непосредственно источником энергии для синтеза АТФ: химическая энергия окисления энергия электрического поля и градиента концентрации энергия АТФ.

Хемиоосмотическая гипотеза объясняет необходимость мембран (крист митохондрий) и механизм действия веществ - разобщителей окисления и фосфорилирования.

Эти разобщители служат переносчиками протонов через мембрану. При этом перенос их осуществляется на той стороне мембраны, где дыхание создает избыток ионов водорода, затем происходит их диффузия через мембрану и освобождение

ионов водорода в противоположном отсеке, где ионы водорода в дефиците. Процесс осуществляется в виде двух реакций.

Реакция 1 - это окисление субстрата АН2 ферментом - акцептором электронов (на внешней поверхности мембраны), в результате чего электроны присоединяются к ферменту, а протоны перемещаются в воду. Затем электроны переносятся на внутреннюю сторону мембраны и там восстанавливают акцептор водорода В (чаще всего кислород). Этот акцептор связывает ионы водорода справа от мембраны, превращаясь в ВН2.

Реакция П - это отщепление двух ионов водорода и фосфата от АДФ с правой стороны мембраны, что компенсирует потерю двух ионов водорода при восстановлении акциптора В. Один из атомов кислорода фосфата переносится на внешнюю сторону мембраны и, соединяясь с двумя ионами водорода с этой стороны, образует воду (Н2О). Остаток фосфата, присоединяясь к АДФ, образует АТФ.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 313; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.