КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Расчет зубьев цилиндрических прямозубых колес на контактную прочность
Расчет сводится к удовлетворению условия, чтобы рабочие контактные напряжения не превышали допускаемые. Расчет ведут для зацепления в полюсе, т.к. выкрашивание начинается у полюсной линии в зоне однопарного зацепления. В качестве исходной принимают формулу Герца для определения σН (касательных напряжений) при сжатии цилиндров, соприкасающихся вдоль образующих. Епр – приведенный модуль упругости материалов сопряженных зубчатых колес; , где Е1 и Е2 – модули упругости материалов шестерни и колеса. Если Е1 = Е2, то Епр = Е = 2,15·105. μ – коэффициент Пуассона (поперечное сжатие); для стали μ 0,3; q – удельная нагрузка, действующая нормально к профилю зуба , где Fn – сила нормального взаимоотношения между зубьями; l Σ – суммарная длина контактных линий; l Σ = bw; Кε·εα = 1. Определим ρпр – приведенный радиус кривизны профилей зубьев в зоне контакта. Он находится из зависимости: .
- радиус кривизны зуба шестерни; - радиус кривизны зуба колеса. Приведенная кривизна: Подставляя полученные значения в формулу Герца, получим: (4) (4) – основная формула для расчетов цилиндрических прямозубых колес на контактную прочность. В формуле обозначено: · - коэффициент, учитывающий форму сопряженных поверхностей зубьев; при αw = 200 ZН = 1,77 · - коэффициент, характеризующий механические свойства материалов сопряженных зубчатых колес; ZМ = 275 – для стальных колес · Zε – коэффициент, характеризующий влияние коэффициента торцевого перекрытия εα или суммарную длину контактных линий l Σ; l Σ колеблется от bw - в зоне контактного зацепления до 2 bw – в зоне двухпарного зацепления. Расчет ведут по некоторой эффективной длине При отсутствии требований повышенной точности расчетов можно принимать: - соответствует εα = 1,6 · и – передаточное число рассчитываемой пары. Величина расчетных контактных напряжений одинакова для шестерни и колеса. Расчет ведут по тому элементу, для которого меньше [σH]. Чаще это колесо, а не шестерня. Формулу (4) применяют при проверочных расчетах. При проектных расчетах определяют аw или dw1 (можно и dw2) по заданным Т1, Т2 и и. С этой целью формулу (4) решают относительно аw или dw1. При этом в формуле оставляют только те из неизвестных параметров, которые можно оценить или выбрать на основе накопленного опыта. Другие неизвестные параметры включают в обобщенный коэффициент, которому дают приближенную оценку. Обозначим и найдем Подставляя это значение в (4), получим: Решая относительно dw1, получим: (5) (5) – основная формула для проведения проектных расчетов. Здесь за Кd обозначено: - вспомогательный коэффициент; Кd = 770 – для стальных колес; Т1 – критический момент на валу шестерни рассчитанной пары, (Н·м); и – передаточное число пары. Решая (4) относительно аw, заменим: ; ; - коэффициент ширины колес; . После преобразования формулы (4) получим: (6) (6) – основная формула для расчета межосевого расстояния, где - вспомогательный коэффициент; Ка = 495 – для прямозубых передач. Формулы (5) и (6) равноправны. При расчете по этим формулам нужно задаваться значениями ψba и ψbd. Их выбирают в зависимости от расположения колес относительно опор, твердости зубьев и вида передачи. Имеются таблицы и рекомендации. Если по условию проектного задания основные параметры редуктора (механизма) должны соответствовать ГОСТ (это требование обычно ставится при проектировании редукторов для серийного выпуска), то значение аw должно быть определено по ГОСТ. В этом случае предпочтительнее формула (6). · ψba = 0,3…0,4 для размеров в основном диапазоне редукторов; · ψba = 0,15…0,2 для КПП; · ψba = 0,1; 0,125; 0,16; 0,2; 0,25; 0,315; 0,4; 0,5; 0,63; 0,8; 1,0; 1,25 – стандартный ряд значений ψba. Для многоступенчатых редукторов, у которых нагрузка повышается от ступени к ступени, каждой последующей ступени значения ψba и ψbd принимают больше, чем в предыдущей. Это способствует хорошему соотношению размеров колес по ступеням. Увеличение ширины колес или ψba или ψbd позволяет уменьшить габариты и массу передачи, но требует повышение точности изготовления и жесткости конструкции. Ширину колес ограничивают, т.к. с увеличением ширины колес возрастает КHβ и ликвидируются преимущества увеличения ширины. Коэффициенты ψba и ψbd находят: . Проще задаваться значением ψba. ψbd характеризует шестерню.
Если одно или оба колеса выполнены не из стали, то в формулах (5) и (6) численные коэффициенты нужно умножить на . Если зубчатая передача выполнена с угловым смещением, то те же коэффициенты умножаются на , где αw – угол зацепления пары со смещением. Контактная прочность зубчатых колес (формулы 4, 5, 6) зависит от радиусов кривизны профилей зубьев, которые выражаются через dw и aw, ширины колес bw и от передаточного числа и, но совсем не зависит от модуля. Модуль передачи может быть сколь угодно малым, лишь бы выполнялось условие: Минимально допустимую величину модуля можно определить: - зависит от расчета на изгиб. Но часто получаются зубья с очень мелким модулем, применения ограничено. Лучше определить модуль из условия равнопрочности зубьев на изгиб и контактную прочность, выразив: . После преобразования формулы (3) получим: , (7) где Кma = 1400 для прямозубых передач. Т1 – в Н·м; УF – в мм; aw – в мм; bw – в мм; [σF] – МПа. С другой стороны величина модуля должна быть проверена по условию: , где Модуль выбирается больший из выражения (7). В передачах большинства редукторов модуль выбирают: - для улучшаемых и нормализованных колес; - для закаленных колес. Большее значение соответствует работе с неизбежным износом, кратковременным режимом работы, значительными перегрузками и средними скоростями. Меньшее значение – продолжительным режимом работы, малыми перегрузками и большими скоростями. Модуль зубчатых колес нужно выбирать минимальным, т.к. с его увеличением растут наружные диаметры заготовок и вес, трудоемкость обработки и потери на трение. С другой стороны мм – для силовых передач принимать не рекомендуют из-за возможности большого понижения несущей способности в результате износа, повышенного влияния неоднородности материалов, опасности разрушения при перегрузках.
Дата добавления: 2014-01-06; Просмотров: 2006; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |