Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Загальна характеристика металів

Тема I. КРИСТАЛІЧНА БУДОВА МЕТАЛІВ

ВCТУП

 

Металознавство - наука, яка вивчає залежність між складом, будовою та властивостями металів і сплавів і закономірності їхніх змін під впливом зовнішніх чинників: теплових, хімічних, механічних, електромагнітних і радіоактивних.

Уперше зв'язок між будовою сталі та її властивостями був встановлений П.П.Аносовим (1799-1855 рр), а найважливіші положення металознавства закладені металургом Д.К.Черновим (1839-1921 р.), який у 1868 р. відкрив внутрішні структурні перетворення в сталі при нагріванні й охолодженні. У 1878 р. ним були викладені основи сучасної теорії кристалізації металів. Ці і наступні роботи Д.К.Чернова створили фундамент сучасного металознавства і термічної обробки сталі. На початку XX ст. велику роль у розвитку металознавства зіграли роботи М.С.Курнакова, котрий застосував для дослідження металів методи фізико-хімічного аналізу (електричний, дилатометричний, магнітний тощо). Вченим і його учнями було вивчено велике число металевих систем, побудовані діаграми стану та встановлені залежності між складом, структурою і властивостями сплавів.

Широке використання рентгеноструктурного аналізу, почате в 20-х роках, дозволило встановити кристалічну будову сплавів і фаз і вивчити зміну його в залежності від обробки сплаву. Починаючи з 1928 р. велика увага приділяється теорії фазових перетворень у сплавах. Це дало можливість визначити механізм перетворень і розробити теорію та практику термічної обробки сталі, дуралюміна та інших важливих сплавів.

Металознавство в зв'язку з безупинним ростом рівня сучасної техніки, ускладненням і розширенням вимог, запропонованих до властивостей і якості металевих сплавів, продовжує успішно розвиватися і в даний час.

 

 

З відомих у даний час 110 елементів 76 є металами, яким у твердому і почасти в рідкому станах характерні такі властивості:

1) висока тепло- і електропровідність;

2) позитивний температурний коефіцієнт електричного опору - з підвищенням температури опір чистих металів зростає; велике число металів (~30) має надпровідність - у цих металів при температурі, близькій до абсолютного нуля, опір стрибкоподібно падає практично до нуля;

3) термоелектронна емісія, тобто спроможність випускати електрони при нагріванні;

4) гарна відбивна спроможність; метали непрозорі і мають металевий блиск;

5) підвищена спроможність до пластичної деформації.

Всі метали і металеві сплави - тіла кристалічні: атоми (іони) розміщені в металах закономірно з утворенням кристалічної гратки.

Показані властивості характерні для металевого стану речовини, основною з яких є наявність вільних електронів. Металевий стан виникає в комплексі атомів, коли при їхньому зближенні зовнішні електрони втрачають зв'язок з окремими атомами, стають загальними, тобто колективізуються і вільно переміщаються по визначених енергетичних рівнях між позитивно зарядженими періодично розташованими в просторі іонами. Отже, стійкість металу, що представляє собою іонно-електронну систему, визначається електричною взаємодією між позитивно зарядженими іонами і колективізованими електронами. Така взаємодія одержала назву металевого зв'язку. Його сила визначається співвідношенням між силами відштовхування і силами тяжіння між іонами й електронами. Атоми (іони) розташовуються на такій відстані один від іншого, щоб енергія взаємодії була мінімальною (рис.1.1). Цьому становищу відповідає рівноважна відстань Ro. Зближення атомів (іонів) на відстань менше Ro або віддалення їх на відстань більше Ro можна здійснити лише при вчиненні певної роботи проти сил відштовхування чи притягування. При закономірному розташуванні атомів у металі з утворенням правильної кристалічної гратки буде реалізований стан з мінімальною енергією взаємодії атомів.

Характер зміни потенційної енергії атомів у кристалічній гратці показаний на рис.1/1. Атоми (іони) займають положення з мінімальною потенційною енергією. Атоми, які складають поверхневий шар, мають підвищену потенційну енергію за рахунок наявності некомпенсованих сил взаємодії (приймаючи сферичний характер силового поля навколо атома (іона)).

Метали - це полікристалічні тіла, які складаються з великого числа дрібних (1000…0,1 мкм), по-різному орієнтованих один відносно другого кристалів, які мають неправильну форму і називаються кристалітами або зернами.

Чисті метали у звичайному структурному стані мають низьку міцність і не забезпечують у багатьох випадках необхідних властивостей. Тому їх застосовують рідко. (Власне, поняття “чистий метал” умовне. Будь-який чистий метал у більшій чи меншій кількості містить домішки і, отже, повинен розглядатися як сплав. Надалі під терміном чистий метал ми будемо розуміти метал, який містить 99,99...99,999 % основного металу. Технічно чистий метал (99,5...99,9 % основного металу) отримується звичайними промисловими способами).

Найширше використовуються сплави - речовини, які отримують сплавленням, спіканням, рідше – осадженням, двох або більше металів або металів з неметалами. Вони мають характеристики, властиві металевому стану.

Розрізняють макроструктуру (будову металу чи сплаву, видиму неозброєним оком або при невеликому збільшенні - до 30 разів) і мікроструктуру (будову металу чи сплаву, яка спостерігається за допомогою мікроскопа при великих збільшеннях).

Макроструктуру вивчають за допомогою макрошліфів. Для їх отримання з великих заготовок (злитків, поковок тощо) або виробів вирізують темплети, поверхню яких шліфують, а потім травлять спеціальними реактивами. При дослідженні макрошліфа можна визначити форму і розташування зерен у литому металі; напрямок волокна (деформовані кристаліти) у поковках і штамповках; дефекти, які порушують суцільність металу (усадочна розпушеність, газові пухирі, раковини, тріщини тощо); хімічну неоднорідність сплаву, викликану кристалізацією чи створену термічним або хіміко-термічним обробленням.

Мікроструктура показує взаємне розташування фаз, їхню форму і розміри. Мікроструктуру вивчають на мікрошліфах. Для цього одну з площин зразка шліфують, полірують і травлять спеціальними реактивами. Мікроструктуру металів спостерігають у світловому або електронному мікроскопах. В останньому випадку готують не мікрошліф, а спеціальний об'єкт - фольгу або репліку. Корисне збільшення в оптичному мікроскопі не перевищує 2000 разів. Застосування великих збільшень марне,, тому що нові, дрібніші деталі структури не стають видимими, адже спроможність мікроскопа, обумовлена хвилястою природою світла, не змінюється.

 

<== предыдущая лекция | следующая лекция ==>
Рівне 2003 | Атомно-кристалічна структура металів
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1127; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.