Даний метод це модифікований метод простої ітерації.
Нехай задана зведена лінійна система: (1). Виберемо деяке початкове наближення вважаючи, що n – те наближення відоме, будемо шукати (n+1) наближення за таким принципом: .
Як правило метод Зейделя дає кращу збіжність, ніж метод простої ітерації. Бувають випадки коли метод Зейделя збіжний, а метод простої ітерації розбіжний і навпаки.
§10 ДОСТАТНІ УМОВИ ЗБІЖНОСТІ ІТЕРАЦІЙНИХ ПРОЦЕСІВ
Нехай маємо лінійну систему .(1)
Означення: нормою матриці називається додатнє число, яке задовольняє наступні умови:
ü , ,
ü , ,
ü ,
ü .
Означення: норму матриці називають канонічною, якщо крім вище перерахованих умов виконуються умови:
ü ,
ü , де .
Найчастіше користуються наступними трьома нормами:
,
,
.
Теорема: процес ітерації для системи (1) збігається до єдиного розв’язку, якщо для деякої канонічної норми матриці виконується умова .
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление