Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сполучення:

Перестановки:.

Класичне означення ймовірності появи події:.

Основні теореми і формули

 

 

Розміщення: .

 

 

 

Теорема додавання ймовірностей несумісних подій: .

 

Ймовірність повної групи подій:

 

Сума ймовірностей протилежних подій: .

 

Ймовірність сумісної появи двох подій: .

 

Ймовірність сумісної появи двох незалежних подій: .

 

Ймовірність появи однієї з двох сумісних подій: .

 

Ймовірність появи хоча б однієї з подій: .

 

Формула повної ймовірності: .

 

Формули Бейєса: .

 

Формула Бернуллі: .

 

Локальна теорема Лапласа: , де .

 

Інтегральна теорема Лапласа: , де .

 

Формула Пуассона: , де .

 

Математичне сподіваннядискретної випадкової величини:

.

 

Дисперсія дискретної випадкової величини:

.

 

Середнє квадратичне відхилення: .

 

Функція розподілу (інтегральна функція розподілу): .

 

Ймовірність того, що випадкова величина прийме значення із проміжку : .

 

Диференціальна функція розподілу: .

 

Ймовірність того, що неперервна випадкова величина прийме значення з інтервалу :

 

Зв’язок між інтегральною і диференціальною функціями розподілу:

Математичне сподівання неперервної випадкової величини: .

 

Дисперсія неперервної випадкової величини: ,

.

 

Математичне сподівання при біноміальному законі розподілу: .

 

Дисперсія при біноміальному законі розподілу: .

 

Рівномірний розподіл ймовірності: .

 

Нормальний закон розподілу: .

 

Ймовірність попадання неперервної випадкової величини, розподіленої нормально, у заданий інтервал: .

 

Емпірична функція розподілу: .

 

Середня арифметична: ,

.

 

Дисперсія: ,

.

 

Коефіцієнт варіації: .

 

Медіана при неперервному розподілі: .

 

Мода при неперервному розподілі:

 

Коефіцієнт асиметрії: .

 

Ексцес або коефіцієнт крутості: .

 

Метод добутків: ,

.

 

Поправка Бесселя: .

 

Виправлена дисперсія:

 

Виправлене середнє квадратичне відхилення:

 

Довірчий інтервал для оцінки математичного сподівання: .

 

Довірчий інтервал для оцінки середнього квадратичного відхилення: .

 

Перевірка гіпотези про рівність дисперсій двох генеральних сукупностей:

 

, .

1. , , , , .

Якщо , тоді немає підстав відкидати нульову гіпотезу. Якщо , тоді нульову гіпотезу відкидаємо.

2. , , , , .

Якщо , тоді немає підстав відкидати нульову гіпотезу. Якщо , тоді нульову гіпотезу відкидаємо.

 

Перевірка гіпотези про нормальний розподіл генеральної сукупності. (Критерій згоди -Пірсона): , , ,

Якщо , тоді немає підстав відкидати нульову гіпотезу. Якщо , тоді нульову гіпотезу відкидають.

 

Методика обчислення теоретичних частот у припущенні нормального розподілу: ,, , .

 

Метод найменших квадратів: .

 

Рівняння прямої: .

Рівняння параболи: , .

Рівняння гіперболи: , , .

Рівняння показникової функції: , , .

 

Рівняння прямої лінії по згрупованим даним: .

 

Вибірковий коефіцієнт кореляції: .

 

<== предыдущая лекция | следующая лекция ==>
Основні поняття і терміни | В.В. Ільченко
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 460; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.