КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод точечной интерполяции
При исследовании СУ часто возникают вопросы определения максимумов и минимумов каких-либо функций (затрат, прибыли, эффектов, качества, конкурентоспособности и т.п., для которых имеются оптимумы и минимумы). Сравнительно часто встречаются такие задачи: 1) достижение заданного уровня исследуемого параметра (функции) при минимуме аргумента; 2) достижение максимально возможного значения функции при заданных допустимых величинах аргумента; 3) достижение при минимуме величины аргумента максимально возможного значения функции. Решение данных задач может предусматривать получение эмпирической зависимости исследуемой функции от аргумента, которую просто описать соответствующей кривой различными математическими методами. Для определения оптимальной величины исследуемой функции с необходимой степенью точности практически достаточно трех-четырех точек аргумента. В этом случае для описания кривой можно воспользоваться методом точечной интерполяции. Метод Монте-Карло (статистических испытаний) Метод Монте-Карлопредставляет собой расчетный численный способ решения исследовательских задач математического характера на основе моделирования случайных величин и формализованного описания неопределенности. Этот способ, называемый также методом статистических испытаний, на основе статистических данных и различного рода ограничений позволяет сформировать имитационные модели и создать множество сценариев реализации задач исследования и выбрать наиболее вероятный из них. Название метода происходит от известного всем игорным бизнесом города Монте-Карло, так как рулетки, используемые в казино, являются простым устройством для получения случайных величин. Метод Монте-Карло часто применяют для анализа рисков различных проектов, используя компьютерные пакеты программ. Результатом такого анализа являются рассчитанные вероятности показателей реализации проекта (например, вероятность получения чистого дисконтированного дохода). Составленные по методу Монте-Карло имитационные модели позволяют построить математическую модель, например проекта с неопределенными значениями параметров. Зная вероятностные распределения параметров проекта, а также корреляционную связь между изменениями параметров, можно получить распределение доходности проекта. Метод Монте-Карло позволяет моделировать любой процесс, на протекание которого влияют случайные факторы. При этом для многих математических задач, не связанных с какими-либо случайностями, можно искусственно придумать вероятностную модель (и даже не одну), позволяющую решать эти задачи. Следовательно, метод Монте-Карло является универсальным методом решения исследовательских и управленческих задач математического характера. Однако он не позволяет решать задачи с большой точностью, т.е. он эффективен при решении тех из них, в которых результат нужен с небольшой точностью.
Дата добавления: 2014-01-06; Просмотров: 1035; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |