Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 6. Функции живого вещества. Биогеохимические циклы веществ

В круговороте веществ живое вещество биосферы выполняет ряд биогенных функций:

Газовая функция осуществляется зелеными растениями в процессе фотосинтеза – при этом атмосфера пополняется кислородом, а также растениями и животными, которые выделяют углекислый газ в процессе дыхания. Происходит также круговорот азота, который тесно связан с жизнедеятельностью микроорганизмов.

Концентрационная функция проявляется в способности живых организмов аккумулировать различные химические элементы, в том числе микроэлементы, из внешней среды (почва, вода, атмосфера). Так, морские водоросли концентрируют йод, диатомовые водоросли и злаки – кремний, моллюски и ракообразные – медь и т.д.

Окислительно-восстановительная функция выражается в химических превращениях веществ в процессе жизнедеятельности организмов. В почве, водной и воздушной средах образуются соли, оксиды, разнообразные новые вещества как результат окислительно-восстановительных реакций. С деятельностью микроорганизмов связано формирования железных и марганцевых руд, известняков и т.п.

Геохимическая функция осуществляется в процессе обмена веществ в живых организмах (питание, дыхание, выделение), разложения отмерших организмов и продуктов их жизнедеятельности до простых исходных веществ.

 

Биогеохимические циклы

Биогеохимические циклы – биогеохимический круговорот веществ, обмен веществом и энергией между различными компонентами биосферы, обусловленный жизнедеятельностью организмов и носящий циклический характер. Термин «биогеохимические циклы» введён в 10-х гг. ХХ в. В. И. Вернадским, разработавшим теоретические основы биогеохимической цикличности в учении о биосфере и трудах по биогеохимии. Все биогеохимические циклы в природе взаимосвязаны, составляют динамическую основу существования жизни, а некоторые из них (циклы С, О, Н, N, S, Р, Са, К. Si и др. т. н. биогенных элементов) являются ключевыми для понимания эволюции и современного состояния биосферы.

Движущими силами биогеохимических циклов служат потоки энергии Солнца (более широко – космоса) и деятельность живого вещества (совокупности всех живых организмов), приводящие к перемещению огромных масс химических элементов, концентрированию и перераспределению аккумулированной в процессе фотосинтеза энергии. Благодаря фотосинтезу и непрерывно действующим циклическим круговоротам биогенных элементов создаётся устойчивая организованность биосферы Земли, осуществляется её нормальное функционирование. Нормальные (ненарушенные) биогеохимические циклы в биосфере не являются замкнутыми, хотя степень обратимости годичных циклов важнейших биогенных элементов достигает 95-98%. Неполная обратимость (незамкнутость) – одно из важнейших свойств биогеохимических циклов, имеющее планетарное значение.

За всю историю развития биосферы (3,5-3,8 млрд. лет) доля вещества, выходящая из биосферного цикла (длительностью от десятков и сотен до нескольких тысяч лет) в геологический цикл (длительностью в млн. лет), обусловила биогенное накопление кислорода и азота в атмосфере, различных химических элементов и соединений в земной коре. Особенно показателен биогеохимический цикл углерода. Ежегодно из биосферного биогеохимического цикла наземных экосистем выходит («сбрасывается») в геологичекий цикл около 130 т углерода, что составляет всего 10-18% от запасов углерода, находящихся в обращении в современной биосфере. В течение фанерозоя (ок. 600 млн. лет) за счёт неполной обратимости цикла углерода в ископаемых осадках накопились огромные запасы углеродистых отложений (известняков, битумов, углей, нефтей и др.), оцениваемые в 1016-1017 т.

Сложившаяся в ходе развития биосферы направленность планетарных и региональных биогеохимических циклов привела к созданию устойчивого биогеохимического (т. н. нормального) фона, характерного для той или иной местности. Этот фон различается для определённых регионов биосферы, в пределах которых по недостатку или избытку определённых химических элементов выделяются естественные геохимические аномалии – биогеохимические провинции. С вариациями исторически сложившегося общего геохимического фона территории и естественными биогеохимическими аномалиями, отражающими реально существующую неоднородность химического состава биосферы, связаны многие эндемичные болезни животных и человека.

Глобальный характер хозяйственной деятельности человека приводит к качественным изменениям в естественной биогеохимической цикличности природных процессов биосферы. По ряду параметров масштабы антропогенных воздействий сопоставимы с количеством веществ, вовлечённых в нормальные биогеохимические циклы. Техногенные продукты, поступающие в биосферу, перегружают нормальное её функционирование и выпадают частично или полностью из системы устойчивых биогеохимических циклов. Возникает новый тип техногенных геохимических аномалий, называются «неоаномалиями» или «антропоаномалиями». Они формируются на нормальном биогеохимическом фоне в чрезвычайно короткие сроки и охватывают не только живое вещество, но и биокосные тела биосферы (атмосферу, почвы, природные воды), проникают в глубокие горизонты земной коры. Происходит нарушение отлаженных во времени природных биогеохимических циклов биосферы. Для ряда элементов и соединений биогеохимические циклы становятся природно-антропогенными (циклы тяжёлых металлов, азота, серы, фосфора, калия и др.). Некоторые создаваемые человеком материалы (пластмассы, детергенты и др. продукты хим. синтеза – т. н. ксенобиотики) не включаются в природные и природно-антропогенные циклы и не перерабатываются в биосфере. Меры борьбы с нарушением биогеохимических циклов связаны с природоохранной деятельностью, созданием малоотходных технологий, широкой реутилизацией продуктов промышленного и сельскохозяйственного, с поисками путей оптимизации основных характеристик биогеохимических циклов и возможностью разумного управления ими.

Рассмотрим биогеохимические циклы основных биогенных элементов.

Круговорот кислорода

Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 85,82% кислорода, в атмосферном воздухе 23,15% по весу или 20,93% по объему, а в земной коре 47,2% по весу. Такая концентрация кислорода в атмосфере поддерживается постоянной благодаря процессу фотосинтеза. В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород. Главная масса кислорода находится в связанном состоянии; количество молекулярного кислорода в атмосфере оценивается в 1,5* 1015 т, что составляет всего лишь 0,01% от общего содержания кислорода в земной коре. В жизни природы кислород имеет исключительное значение.

Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Кислород входит в состав белков, жиров, углеводов, из которых "построены" организмы; в человеческом организме, например, содержится около 65% кислорода. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе. Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот на значительных территориях. Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца. Таким образом, в природе непрерывно совершается круговорот кислорода, поддерживающий постоянство состава атмосферного воздуха.

Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды. Круговорот воды (H2O) заключается в испарении воды с поверхности суши и моря, переносе ее воздушными массами и ветрами, конденсации паров и последующее выпадение осадков в виде дождя, снега, града, тумана.

 

Круговорот углерода

Углерод по распространенности на Земле занимает шестнадцатое место среди всех элементов и составляет приблизительно 0,027% массы земной коры. В несвязанном состоянии он встречается в виде алмазов (наибольшие месторождения в Южной Африке и Бразилии) и графита (наибольшие месторождения в ФРГ, Шри-Ланка и Россия). Каменный уголь содержит до 90% углерода. В связанном состоянии углерод входит также в разные горючие ископаемые, в карбонатные минералы, например кальцит и доломит, а также в состав всех биологических веществ. В форме диоксида углерода он входит в состав земной атмосферы, в которой на его долю приходится 0,046% массы.

Углерод имеет исключительное значение для живого вещества (живым веществом в геологии называют совокупность всех организмов, населяющих Землю). Из углерода в биосфере создаются миллионы органических соединений. Углекислота из атмосферы в процессе фотосинтеза, осуществляемого зелеными растениями, ассимилируется и превращается в разнообразные органические соединения растений. Растительные организмы, особенно низшие микроорганизмы, морской фитопланктон, благодаря исключительной скорости размножения, продуцируют в год около 1,5*1011т углерода в виде органической массы. Растения частично поедаются животными (при этом образуются пищевые цепи). В конечном счете, органическая масса в результате дыхания, гниения и горения превращается в углекислый газ или отлагается в виде сапропеля, гумуса, торфа, которые, в свою очередь, дают начало многим другим соединениям – каменным углям, нефти. В процессах распада органических веществ, их минерализации, огромную роль играют бактерии (например, гнилостные), а также многие грибы (например, плесневые). В активном круговороте углекислый газ – живое вещество участвует очень небольшая часть всей массы углерода. Огромное количество углекислоты законсервировано в виде ископаемых известняков и других пород.

Между углекислым газом атмосферы и водой океана существует подвижное равновесие. Организмы поглощают углекислый кальций, создают свои скелеты, а затем из них образуются пласты известняков. Атмосфера пополняется углекислым газом благодаря процессам разложения органических веществ, карбонатов и т.д. Особенно мощным источником являются вулканы, газы которых состоят главным образом из паров воды и углекислого газа.

 

Круговорот азота

Азот входит в состав земной атмосферы в несвязанном виде в форме двухатомных молекул. Приблизительно 78% всего объема атмосферы приходится на долю азота. Кроме того, азот входит в состав растений и животных организмов в форме белков. Растения синтезируют белки, используя нитраты из почвы. Нитраты образуются там из атмосферного азота и аммонийных соединений, имеющихся в почве. Процесс превращения атмосферного азота в форму, усвояемую растениями и животными, называется связыванием (или фиксацией) азота.

При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция СаСО3, образует нитраты:

2HNО3 + СаСО3 = Са(NО3)2 + СО2 + Н2О.

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде.

Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещающие потери азота. К таким процессам относятся, прежде всего, происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий - "клубеньков", почему они и получили название клубеньковых бактерий. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества.

Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений. В основном используются нитрат кальция Ca(NO3)2, нитрат аммония NH4NO3, нитрат натрия NаNO3, и нитрат калия KNO3. Например, в Таиланде используются листья лейкаены как органическое удобрение. Лейкаена принадлежит к бобовым растениям и, как и все они, содержит очень много азота. Поэтому ее можно использовать вместо химического удобрения.

В последнее время наблюдается повышения содержания нитратов в питьевой воде, главным образом за счет усилившегося использования искусственных азотных удобрений в сельском хозяйстве. Хотя сами нитраты не так уж опасны для взрослых людей, в организме человека они могут превращаться в нитриты. Кроме того, нитраты и нитриты используются для обработки и консервирования многих пищевых продуктов, в том числе ветчины, бекона, солонины, а также некоторых сортов сыра и рыбы. Отдельные ученые полагают, что в организме человека нитраты могут превращаться в нитрозамины: Известно, что нитрозамины способны вызывать онкологические заболевания у животных. Большинство из нас уже подвержено воздействию нитрозаминов, которые в небольшом количестве находятся в загрязненном воздухе, сигаретном дыму и некоторых пестицидах. Полагают, что нитрозамины могут быть причиной 70-90% случаев онкологических заболеваний, возникновение которых приписывают действию факторов окружающей среды.

 

Круговорот фосфора

Источником фосфора биосферы является главным образом апатит, встречающийся во всех магматических породах. В превращениях фосфора большую роль играет живое вещество. Организмы извлекают фосфор из почв, водных растворов. Усвоение фосфора растениями во многом зависит от кислотности почвы. Фосфор входит в многочисленные соединения в организмах: белки, нуклеиновые кислоты, костная ткань, лецитины, фитин и другие соединения; особенно много фосфора входит в состав костей. Фосфор жизненно необходим животным в процессах обмена веществ для накопления энергии. С гибелью организмов фосфор возвращается в почву и в илы морей. Он концентрируется в виде морских фосфатных конкреций, отложений костей рыб, что создает условия для создания богатых фосфором пород, которые в свою очередь являются источником фосфора в биогенном цикле.

Содержание фосфора в земной коре составляет 0,08-0,09 % её массы. В свободном состоянии фосфор в природе не встречается вследствие его легкой окисляемости. В земной коре он находится в виде минералов (фторапатит, хлорапатит, вивианит и др.), которые входят в состав природных фосфатов – апатитов и фосфоритов. Фосфор имеет исключительное значение для жизни животных и растений.

Так как растения уносят из почвы значительное количество фосфора, а естественное пополнение фосфорными соединениями почвы крайне незначительно, то внесение в почву фосфорных удобрений является одним из важнейших мероприятий по повышению урожайности. Ежегодно в мире добывают приблизительно 125 млн. т. фосфатной руды. Большая ее часть расходуется на производство фосфатных удобрений.

 

Круговорот серы

Круговорот серы также тесно связан с живым веществом. Сера в виде SO2, SO3, H2S и элементарной серы выбрасывается вулканами в атмосферу. С другой стороны, в природе в большом количестве известны различные сульфиды металлов: железа, свинца, цинка и др. Сульфидная сера окисляется в биосфере при участи многочисленных микроорганизмов до сульфатной серы почв и водоемов. Сульфаты поглощаются растениями. В организмах сера входит в состав аминокислот и белков, а у растений, кроме того, - в состав эфирных масел и т.д. Процессы разрушения остатков организмов в почвах и в илах морей сопровождаются очень сложными превращениями серы. При разрушении белков при участии микроорганизмов образуется сероводород. Далее сероводород окисляется либо до элементарной серы, либо до сульфатов. В этом процессе участвуют разнообразные микроорганизмы, создающие многочисленные промежуточные соединения серы. Известны месторождения серы биогенного происхождения. Сероводород может вновь образовать "вторичные" сульфиды, а сульфатная сера создает гипс. В свою очередь сульфиды и гипс вновь подвергаются разрушению, и сера возобновляет свою миграцию.

<== предыдущая лекция | следующая лекция ==>
Стратификационная структура современного российского общества | Економічна сутність страхових відносин
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1082; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.