КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
С широтно-импульсным регулированием
ОСОБЕННОСТИ УПРАВЛЕНИЯ ПРЕОБРАЗОВАТЕЛЯМИ ЛЕКЦИЯ 10 СИСТЕМЫ С ВЕРТИКАЛЬНЫМ СПОСОБОМ УПРАВЛЕНИЯ Широтно-импульсное регулирование выходного напряжения (тока) преобразователей на вентилях с полным управлением присуще следующим видам преобразователей: • постоянного напряжения в постоянное (см. раздел 1.1 и 1.2); • постоянного напряжения в переменное (автономным инверторам тока и напряжения – см. раздел 2.1 и 2.3); • регуляторам переменного напряжения в переменное (см. раздел 3); • непосредственным преобразователям частоты с циклическим управлением или с коэффициентом преобразования по напряжению больше единицы (см. разделы 4.2 и 4.3). По сути дела, при широтно-импульсном регулировании постоянного или переменного напряжений необходимо изменять соотношения длительностей проводимости двух вентилей, сохраняя сумму этих двух длительностей неизменной или регулируемой. Фактически это означает, что система управления должна обеспечить сдвиг фазы импульсов одной последовательности относительно импульсов другой последовательности с той же частотой следования (постоянной или регулируемой). Первым очевидным после изучения раздела 6.3 решением этой задачи является использование вертикального метода управления. При этом из определения вида систем управления опускается в общем случае понятие «синхронная», так как для преобразователя постоянного напряжения в постоянное синхронизировать управление не с чем. Для определения вида передаточной характеристики преобразователя постоянного напряжения в постоянное с ШИР необходимо учесть линейность регулировочных характеристик таких широтно-импульсных преобразователей (ШИП) в соответствии с (1.1.1) и (1.1.2) для однополярной и двуполярной модуляций. С другой стороны, зависимость относительной длительности импульсов управления от сигнала задания при вертикальном методе управления имеет линейный характер при пилообразном опорном напряжении и синусоидальный – при гармонической форме опорного напряжения. Тогда очевидно, что передаточная характеристика ШИП на идеальных элементах будет линейной при пилообразном опорном напряжении и синусоидальной – при гармоническом. Таким образом, здесь зависимость передаточной характеристики ШИП от формы опорного напряжения получилась обратной по сравнению с этой зависимостью у управляемого выпрямителя, представленной на рис. 6.2.3. Структура системы управления ШИП очевидна и построена на рис. 6.6.1, а, а диаграммы ее работы – на рис. 6.6.1, б для случая однополярной ШИР, реализуемой в схемах транзисторных ШИП (см. рис. 1.1.2, 1.1.4, 1.1.6). Так как транзистор требует наличия широкого импульса управления (на все время своей проводимости), то теперь устройство сравнения должно фиксировать не просто момент сравнения входных сигналов, а все время превышения одного сигнала над другим. Вид пилы опорного напряжения определяет характер широтно-импульсного регулирования: регулирование положения переднего фронта импульса при нарастающей пиле, заднего фронта – при спадающей пиле, обоих фронтов – при симметричной (треугольной) пиле. При этом импульс К1 обеспечивает управление транзистором, формирующим импульс напряжения на нагрузке, а импульс К2 – управление транзистором, формирующие нулевую паузу напряжения на нагрузке (для схемы рис. 1.1.2 импульс К2 не требуется).
а б Рис 6.6.1
Здесь передаточная характеристика ШИП будет лежать в первом квадранте, как показано на рис. 6.6.2. При отрицательном импульсе однополярной ШИР (ОШИР) на нагрузке передаточная характеристика будет лежать в третьем квадранте. Для получения передаточной характеристики при двухполярной ШИР-ДШИР – (см. рис. 1.1.1, б), проходящей через первый и третий квадранты (пунктир на рис. 6.6.2), опорное напряжение очевидно должно быть двухполярным.
Рис 6.6.2
Регулятор переменного напряжения с однополярной ШИР (см. раздел 3.4) будет иметь также линейную передаточную характеристику, поскольку частота коммутации при ШИР обычно более чем на два порядка превышает частоту напряжения питающей сети и отдельные импульсы в кривой напряжения можно практически рассматривать как прямоугольные, как и в рассмотренном выше случае. Регуляторы переменного напряжения повышающе-понижающего типов будут иметь передаточные характеристики, подобные их регулировочным характеристикам, так как в вертикальной системе управления с пилообразным опорным напряжением относительная длительность импульсов управления пропорциональна напряжению управления. Подобным образом обстоит дело и с передаточной характеристикой в повышающе-понижающем непосредственном преобразователе частоты. Наконец, в непосредственном преобразователе частоты с циклическим методом формирования выходного напряжения передаточная характеристика будет нелинейной и зависящей от выходной частоты. Это связано с тем, что частота коммутации при однократном ШИР сравнима с частотой напряжения питающей сети, так как только ее превышение над частотой сети определяет частоту выходного напряжения. В результате отдельные импульсы в кривой выходного напряжения промодулированы кривой питающего напряжения и мало похожи на прямоугольные. Структуры систем управления обоими рассмотренными выше непосредственными преобразователями частоты подобны. Обобщенная структура системы управления ими показана на рис. 6.6.3. Здесь генератор опорного напряжения ГОН пилообразной формы регулируется по частоте первым сигналом задания . Второй сигнал задания сравнивается в устройстве сравнения УС с опорным напряжением и формирует импульсы на включение вентилей, через которые напряжение сети прикладывается к нагрузке. Распределяются эти импульсы из общего канала по трем вентилям одной выходной фазы преобразователя с помощью распределителя импульсов РИ. Диаграммы этих импульсов управления для вентилей построены на рис. 6.6.4 для преобразователя по схеме рис. 4.2.1. Последовательность импульсов S 2, полученную инверсией последовательности S 1, используют для включения вентилей, связанных в разных выходных фазах преобразователя, с одной и той же фазой питающей сети. Это обеспечивает формирование нулевой паузы в напряжении выхода за счет замыкания между собой всех трех фаз нагрузки. Идеализированная кривая выходного напряжения преобразователя приведена на последней диаграмме (сравните с реальной кривой на второй диаграмме рис. 4.2.2).
Рис 6.6.3
СИСТЕМЫ СО СЛЕДЯЩИМ СПОСОБОМ УПРАВЛЕНИЯ В системах управления на принципе слежения, во-первых, имеется цепь обратной связи по той выходной координате вентильного преобразователя, по которой ведется слежение за заданием (напряжение, ток, мощность), и, во-вторых, отсутствует генератор опорного напряжения, синхронизированного каким-то внешним сигналом (сеть, таймер). Удобнее всего первоначально ознакомиться с такими системами сделать применительно к управлению преобразователем постоянного напряжения в постоянное, т.е. ШИП (см. раздел 1.1). Блок-схема системы управления простейшим ШИП (см. рис. 1.1.2) со слежением за выходным напряжением приведена на рис. 6.6.5. Она содержит сумматор С сигнала задания и сигнала обратной связи , пропорционального мгновенному значению выходного напряжения ШИП с коэффициентом пропорциональности Кос, интегратор И, релейный элемент РЭ, характеристика вход-выход которого изображена над ним. На временных диаграммах работы системы управления показаны сигнал обратной связи и задания на первой (рис. 6.6.6), их разность – на второй, интеграл разности – на третьей, выходной сигнал релейного элемента, управляющий ключом ШИП, – на четвертой.
Рис 6.6.5
Рис 6.6.6
При изменении сигнала задания будет изменяться не только скважность импульсов на нагрузке, но и частота следования импульсов. Составив дифференциальные уравнения для сигнала реального интегратора с постоянной времени интегрирования для двух интегралов и решив их, припасовав решения в точке разрыва, получим следующие соотношения для относительной длительности периода автоколебаний при однополярной модуляции:
и при двухполярной модуляции:
где - заданная степень регулирования выходного напряжения; - относительная величина порога срабатывания релейного элемента.
Графики этих зависимостей построены на рис. 6.6.7.
Если изменение частоты коммутации при регулировании выходного напряжения по каким-то причинам нежелательно, то можно ее стабилизировать, изменяя соответствующим образом напряжение порога релейного элемента. Эти законы изменения можно найти из решения уравнений (6.6.1) или (6.6.2) относительно . Другая возможность фиксирования частоты коммутации при использовании следящего управления – это переход от релейного слежения к непрерывному (по сути, релейно-импульсному). При этом один из моментов переключения ШИП задается от генератора фиксированной частоты, а второй момент определяется срабатыванием релейного элемента. Очевидно, что в этом случае будут отслеживаться или максимальные значения сигнала интегратора, или минимальные, что может потребоваться при слежении за выходным током ШИП. Таким образом, следящий метод управления позволяет воспроизводить сигнал задания на выходе преобразователей на вентилях с полным управлением не только по средним по тактам значениям выходной координаты, но и при слежении за выходным током, формировать его заданные экстремальные значения. Рассмотренный метод следящего управления можно применить и к другим указанным выше типам преобразователей с ШИР, кроме непосредственного преобразователя частоты с циклическим управлением. Там изменение частоты импульсов при ШИР, вызванное регулированием скважности (величины выходного напряжения) недопустимо, так как это приведет к изменению и частоты выходного напряжения без побуждения к этому по каналу регулирования частоты.
Дата добавления: 2014-01-07; Просмотров: 2359; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |