Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

End Sub. Dim A As Integer, B As Integer, NOD As Integer





Loop

End If

Else

Dim A As Integer, B As Integer, NOD As Integer

Option Explicit

Листинг программы

Алгоритм решения и его тестирование

Постановка задачи

Пример решения задачи

Вычислить наибольший общий делитель (NOD) двух натуральных чисел A и B, используя алгоритм Евклида.

Формальная постановка задачи:

Дано: A, B.

Найти: NOD

2. Контрольный пример:

A=35; B=14; NOD=7.

A B   A=B     A>B   B A     NOD   нет     да          
нет     да     нет     нет     да  
     
         

Private Sub Form_Load()

A = CInt(InputBox("Введите А:"))

B = CInt(InputBox("Введите B:"))

Do Until A = B

If A > B Then

A = A - B

B = B - A

NOD = A

MsgBox ("НОД=" + Str(NOD))





Дата добавления: 2014-01-07; Просмотров: 266; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.001 сек.