КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Свойства знания
Декларативная и процедурная формы представления знаний Форма представления знаний оказывает существенное влияние на характеристики ИИС. Базы знаний являются моделями человеческих знаний. Однако все знания, которые привлекает человек в процессе решения сложных задач, смоделировать невозможно. Поэтому в интеллектуальных системах требуется четко разделить знания на те, которые предназначены для обработки компьютером, и знания, используемые человеком. Очевидно что для решения сложных задач БЗ должна иметь достаточно большой объем, в связи с чем неизбежно возникают проблемы управления такой базой. Поэтому при выборе модели представления знаний следует учитывать такие факторы, как однородность представления и простота понимания. Однородность представления приводит к упрощению механизма управления знаниями. Простота понимания важна для пользователей интеллектуальных систем и экспертов, чьи знания закладываются в ИИС. Если форма представления знаний будет трудна для понимания, то усложняются процессы приобретения и интерпретации знаний. Следует заметить, что одновременно выполнить эти требования довольно сложно, особенно в больших системах, где неизбежным становится структурирование и модульное представление знаний. Для описания знаний на абстрактном уровне разработаны специальные языки - языки описания знаний. Эти языки также делятся на языки процедурного типа и декларативного. Все языки описания знаний, ориентированные на использование традиционных компьютеров фон-неймановской архитектуры, являются языками процедурного типа. Разработка языков декларативного типа, удобных для представления знаний, является актуальной проблемой сегодняшнего дня. Знания имеют пять важных свойств, позволяющих считать их таковыми: внутреннюю интерпретируемость, рекурсивную структурируемость, взаимосвязь единиц, наличие семантического пространства с метрикой и активность. Сущность этих свойств знаний заключается в следующем. Внутренняя интерпретируемость. Вместе с информационной единицей, представляющей собственно элемент данных, в памяти ЭВМ стало возможным хранить систему имен, связанную с такой информационной единицей. Наличие системы имен позволяет системе "знать", что хранится в ее памяти, и, следовательно, уметь отвечать на запросы о содержании памяти, которые могут порождаться в процессе выполнения программ в самой системе или поступать извне от пользователей либо других систем. Рекурсивная структурируемость. Информационные единицы могут при необходимости расчленяться на более мелкие и объединяться в более крупные по принципу матрешки. Для этих операций могут использоваться родовидовые отношения и принадлежность элементов к классу. В действительности число структурообразующих отношений насчитывает более 200. Взаимосвязь единиц. Между единицами возможно установление самых разнообразных отношений, отражающих семантику и прагматику связей явлений и фактов. Когда между информационными единицами в памяти системы возникает система отношений, фрагментами этой структуры начинают определяться новые информационные единицы. Наличие семантического пространства с метрикой. Оно характеризует близость-удаленность информационных единиц. Специалисты в области когнитивной психологии (психологии познания) считают, что знания не могут быть бессистемным "сборищем" отдельных информационных единиц, а должны быть взаимосвязанными и взаимозависимыми в некотором общем для них когнитивном семантическом пространстве. Активность. В программировании процедурам всегда отводилась роль активизирующего начала. Они отражали способ решения задачи, активизировали необходимые данные, пассивно лежащие в памяти системы. Эта "безгласность" данных в ЭВМ не находит аналогов у человека. Для когнитивных структур в нашей памяти характерна внутренняя активность: мы используем те или иные процедуры при возникновении определенной ситуации. То или иное соотношение между информационными единицами побуждает нас к тем или иным действиям, для реализации которых должны быть выполнены определенные процедуры. Активность базы знаний позволяет СИИ формировать мотивы, ставить цели и строить процедуры для их выполнения. В настоящее время не создано баз знаний СИИ, в которых в полной мере были бы реализованы все свойства знаний. Основными причинами этого являются: ограниченные возможности используемых моделей представления знаний, неполнота знаний предметных областей, несовершенство методов приобретения знаний и несоответствие типов используемых знаний и моделей их представления. Справедливость этого вывода подтверждается практикой создания СИИ, в частности экспертных систем. Знания существуют в различных формах: в памяти человека (эксперта); материализованные (канонизированные) знания (учебники, монографии и т.п.); полуформализованная структурированная модель (поле) знаний; формализованное знание на некотором языке представления; в базе знаний. 7. Интенсионал и экстенсионал понятия Понятие экстенсионала был введено австрийским логиком и философом Р. Карнапом для анализа значения языковых выражений. Т. н. метод интенсионалов и экстенсионалов представляет собой модификацию и дальнейшую разработку семантической концепции немецкого математика и логика Г. Фреге. Интенсионал (от лат. intensio - внутреннее натяжение, усиление) - в средневековой логике означал содержание слова-понятия как совокупность мыслимых признаков соответствующего ему предмета. Противопоставлялся объему, т. е. совокупности обозначаемых (называемых) данным словом-понятием предметов, который назывался экстенсионалом (от лат. extensio - протяжение, расширение). Существует множество способов определять понятия. Способ, основанный на идее интенсионала, один из широко применяемых. Интенсионал понятия - это определение его через соотнесение с понятием более высокого уровня абстракции с указанием специфических свойств. Интенсионалы формулируют знания об объектах. Другой способ определяет понятие через соотнесение с понятиями более низкого уровня абстракции или перечисление фактов, относящихся к определяемому объекту. Это есть определение через данные, или экстенсионал понятия. Пример 1.1 Парадигмы представления знаний. Классификация моделей
Дата добавления: 2014-01-07; Просмотров: 1607; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |