Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Развитие взглядов на физическую картину мира

Общие особенности современной естественно-научной картины мира

Лекция № 3. Современная естественно-научная картина мира. Основные физические концепции в естествознании.

Под картиной мира понимается система важнейших принципов и законов, лежащих в основе окружающего мира. С развитием науки появляются новые теории, открываются новые законы. Естественно те теории, которые господствуют в определенный исторический период, формируют физическую картину мира.

До 19 в. существовала физическая картина мира основанная на классической физике. В основе ее лежали законы движения, которым подчинялись все физические тела вокруг и небесные тела. Известно, что Ньютон создал свой вариант дифференциального и интегрального исчисления для решения этих задач: мгновенная скорость определялась как первая производная пути по времени, ускорение — как первая производная от скорости по времени или вторая производная пути по времени. Благодаря этому были сформулированы законы динамики и закон всемирного тяготения. Эти законы проверялись экспериментально. Таким образом, в тот период в основе изучения природы лежали основные законы механики сформулированные Ньютоном.

Такая картина мира давала представление о действующих на тела силах, но не уточняло причину. Например, — «сила притяжения пропорциональна массам тел и обратно пропорциональна квадрату расстояния», но причины тяготения этим законом не устанавливались.

Электродинамика дополнила существующую картину мира, установив зависимость между электрическими и магнитными явлениями. Ученые 19 в. обнаружили, что магнитная стрелка отклоняется над проводником с током, во вращающемся в магнитном поле замкнутом контуре возникает ток. Было показано, что существуют не только тела, но и поля (гравитационные, электромагнитные). После того как объектом изучения стали не только тела, но и поля, картина мира приобрела более сложный характер и стала называться электромагнитной (или полевой) картиной мира.

В конце 19-20 вв. были сделаны крупные открытия, коренным образом изменившие физическую картину мира. Прежде всего, это открытия строения вещества, взаимодействия поля и вещества и законов микромира. Оказалось, что атом состоит из элементарных частиц, которые подчиняются законам не классической физики, а квантовой механики и статистической физики. Кроме того, было обнаружено, что элементарные частицы обладают не только корпускулярными свойствами, но и волновыми. Так было установлено, что между веществом и полем нет непроходимой границы. Для объяснения процессов микромира была создана квантовая механика. Квантовая механика не дает однозначных ответов, а определяет лишь вероятность того или иного результата. Ее главное открытие — вероятностный характер предсказаний. Например, вероятность нахождения электрона в определенном месте равняется квадрату модуля волновой функции, которая описывает волновые свойства частиц. Статистическая физика изучает свойства сложных систем и связь со свойствами отдельных частиц. В ней используются методы рассматривающие распределение частиц по скоростям с помощью функций распределения, которая определяет вероятность определенной скорости для частицы. Таким образом, с развитием науки физическая картина мира становится все сложнее и приобретает вероятностный характер. Эта картина мира – квантово-статистическая (квантово-релятивистская).

В начале 60-х годов XX в. американский ученый Томас Кун выдвинул парадигмальную концепцию развития научного познания, в соответствии с которой теория до тех пор остается приня­той научным сообществом, пока не подвергается сомнению основная па­радигма (установка, образ) научного исследования в данной области. Динамика науки была представлена Куном следующим образом:

<== предыдущая лекция | следующая лекция ==>
Микро-, макро- и мегамиры | Старая парадигма ® нормальная стадия развития науки ® революция в науке ® новая парадигма
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1055; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.