КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Проверка гомоскедастичности дисперсии ошибок
В соответствии с четвёртой предпосылкой МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это значит, что для каждого значения фактора остатки имеют одинаковую дисперсию . Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность. В качестве примера реальной гетероскедастичности можно привести то, что люди с большим доходом не только тратят в среднем больше, чем люди с меньшим доходом, но и разброс в их потреблении также больше, поскольку они имеют больше простора для распределения дохода. Наличие гетероскедастичности можно наглядно видеть из поля корреляции (- графический метод обнаружения гетероскедастичности).
Наличие гомоскедастичности или гетероскедастичности можно видеть и по рассмотренному выше графику зависимости остатков от теоретических значений результативного признака .
Для множественной регрессии данный вид графиков является наиболее приемлемым визуальным способом изучения гомо- и гетероскедастичности. При нарушении гомоскедастичности имеем неравенства: , где - постоянная дисперсия ошибки при соблюдении предпосылки. Т.е. можно записать, что дисперсия ошибки при наблюдении пропорциональна постоянной дисперсии: . - коэффициент пропорциональности. Он меняется при переходе от одного значения фактора к другому. Задача состоит в том, чтобы определить величину и внести поправку в исходные переменные. При этом используют обобщённый МНК, который эквивалентен обычному МНК, применённому к преобразованным данным. Чтобы убедиться в обоснованности использования обобщённого МНК проводят эмпирическое подтверждение наличия гетероскедастичности. При малом объёме выборки, что наиболее характерно для эмпирических исследований, для оценки гетероскедастичности может использоваться метод Гольдфельда-Квандта (в 1965 г. они рассмотрели модель парной линейной регрессии, в которой дисперсия ошибок пропорциональна квадрату фактора). Пусть рассматривается модель, в которой дисперсия пропорциональна квадрату фактора: , . А также остатки имеют нормальное распределение и отсутствует автокорреляция остатков. Параметрический тест (критерий) Гольдфельда – Квандта: 1. Все n наблюдений в выборке упорядочиваются по величине x. 2. Вся упорядоченная выборка разбивается на три подвыборки (объёмом k, С, k.) . Исключаются из рассмотрения С центральных наблюдений. (По рекомендациям специалистов, объём исключаемых данных С должен быть примерно равен четверти общего объёма выборки n, в частности, при n = 20, С =4; при n = 30, С = 8; при n = 60, С =16). 3. Оцениваются отдельные регрессии для первой подвыборки (k первых наблюдений) и для последней подвыборки (k последних наблюдений). 4. Определяются остаточные суммы квадратов для первой и второй групп. Если предположение о пропорциональности дисперсий отклонений значениям x верно, то . 5. Выдвигается нулевая гипотеза которая предполагает отсутствие гетероскедастичности. Для проверки этой гипотезы рассчитывается отношение , которое имеет распределение Фишера с степеней свободы (здесь m – число объясняющих переменных). Если , то гипотеза об отсутствии гетероскедастичности отклоняется при уровне значимости α. Этот же тест может быть использован и при предположении об обратной пропорциональности между дисперсией и значениями объясняющей переменной . В этом случае статистика Фишера принимает вид: . При установлении гетероскедастичности возникает необходимость преобразования модели с целью устранения данного недостатка. Вид преобразования зависит от того, известны или нет дисперсии отклонений . Обобщенный метод наименьших квадратов (ОМНК) При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов заменять обобщенным методом наименьших квадратов (ОМНК). Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Остановимся на использовании ОМНК для корректировки гетероскедастичности. Рассмотрим ОМНК для корректировки гетероскедастичности. Будем предполагать, что среднее значение остаточных величин равно нулю , а дисперсия пропорциональна величине , т.е. , где – дисперсия ошибки при конкретном -м значении фактора; – постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков; – коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии. При этом предполагается, что неизвестна, а в отношении величин выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности. В общем виде для уравнения модель примет вид: . В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе -го наблюдения, на . Тогда дисперсия остатков будет величиной постоянной, т. е. . Иными словами, от регрессии по мы перейдем к регрессии на новых переменных: и . Уравнение регрессии примет вид: , а исходные данные для данного уравнения будут иметь вид: , . По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные и взяты с весами . Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида . Соответственно получим следующую систему нормальных уравнений: , Т.е. коэффициент регрессии при использовании обобщенного МНК с целью корректировки гетероскедастичности представляет собой взвешенную величину по отношению к обычному МНК с весом . Если преобразованные переменные и взять в отклонениях от средних уровней, то коэффициент регрессии можно определить как . При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии определяется по формуле: . Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Для применения ОМНК необходимо знать фактические значения дисперсий отклонений . На практике такие значения известны крайне редко. Поэтому, чтобы применить ВНК, необходимо сделать реалистические предположения о значениях . В эконометрических исследованиях чаще всего предполагается, что дисперсии отклонений пропорциональны или значениям xi, или значениям , т.е или . Если предположить, что дисперсии пропорциональны значениям фактора x, т.е. , тогда уравнение парной регрессии преобразуется делением его левой и правой частей на : Или . Здесь для случайных отклонений выполняется условие гомоскедастичности. Следовательно, для регрессии применим обычный МНК. Следует отметить, что новая регрессия не имеет свободного члена, но зависит от двух факторов. Оценив для неё по МНК коэффициенты а и b, возвращаемся к исходному уравнению регрессии. Если предположить, что дисперсии , то соответствующим преобразованием будет деление уравнения парной регрессии на xi: или, если переобозначить остатки как : . Здесь для отклонений vi также выполняется условие гомоскедастичности. В полученной регрессии по сравнению с исходным уравнением параметры поменялись ролями: свободный член а стал коэффициентом, а коэффициент b – свободным членом. Применяя обычный МНК в преобразованных переменных , получим оценки параметров, после чего возвращаемся к исходному уравнению. Пример. Рассматривая зависимость сбережений от дохода , по первоначальным данным было получено уравнение регрессии . Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных: . Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т.е. 0,1178 и 0,1026 – оценки параметра зависимости сбережений от дохода. В случае множественной регрессии , Если предположить (т.е. дисперсия ошибок пропорциональна квадрату первой объясняющей переменной), то в этом случае обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения: . Следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным. Пример. Пусть – издержки производства, – объем продукции, – основные производственные фонды, – численность работников, тогда уравнение является моделью издержек производства с объемными факторами. Предполагая, что пропорциональна квадрату численности работников , мы получим в качестве результативного признака затраты на одного работника , а в качестве факторов следующие показатели: производительность труда и фондовооруженность труда . Соответственно трансформированная модель примет вид , где параметры , , численно не совпадают с аналогичными параметрами предыдущей модели. Кроме этого, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее абсолютное изменение издержек производства с изменением абсолютной величины соответствующего фактора на единицу, они фиксируют при обобщенном МНК среднее изменение затрат на работника; с изменением производительности труда на единицу при неизменном уровне фовдовооруженности труда; и с изменением фондовооруженности труда на единицу при неизменном уровне производительности труда. Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции, , можно перейти к уравнению регрессии вида . В нем новые переменные: – затраты на единицу (или на 1 руб. продукции), – фондоемкость продукции, – трудоемкость продукции. В заключение следует отметить, что обнаружении гетероскедастичности и её корректировка являются весьма серьёзной и трудоёмкой проблемой. В случае применения обобщённого (взвешенного) МНК необходима определённая информация или обоснованные предположения о величинах .
Дата добавления: 2014-01-07; Просмотров: 2951; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |