Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 3. Система шифрования с открытым ключом. Стандарты хэширования и цифровой подписи. Управление криптографическими ключами

 

Цель лекции: изучение блоков языка GPSS World, необходимых для моделирования одноканального устройства.

Содержание:

а) система шифрования с открытым ключом;

б) шифр DES;

в) цифровые подписи и цифровые сертификаты.

 

В предыдущих главах рассматривались методы шифрования с закрытым ключом. Но шифрование с секретным ключом – это не единственный способ шифрования данных. Одним из наиболее значительных прорывов в криптографии двадцатого столетия была разработка шифрования с открытым ключом.

Алгоритмы с открытым ключом, или асимметричные алгоритмы, базируются на использовании отдельных шифровального (открытого – public) и дешифровального (закрытого – private) ключей. В алгоритмах с открытым ключом требуется, чтобы закрытый ключ было невозможно вычислить по открытому ключу. Исходя из этого, требования шифровальный ключ может быть доступным кому угодно без какого-либо ущерба безопасности алгоритма шифрования.

Алгоритм Ривеста-Шамира-Эдлемана (RSA). Этот алгоритм носит инициалы его изобретателей. Он имеет важное значение, поскольку может быть использован как для шифрования, так и для цифровых подписей.

Стойкость алгоритма RSA определяется сложностью разложения больших чисел на множители. (Наверное, криптоанализ шифра RSA возможен и без использования операции разложения на множители, но никто до сих пор не доказал этого).

Ниже кратко описан принцип действия алгоритма RSA.

1.Генерируется два простых числа p и q (100 цифр и более), причем n=pq.

2.В качестве открытого ключа выбирается целое число e, взаимно простое с числом (p-1)(q-1).

3.Закрытый ключ d вычисляется из условия ed mod (p-1)(q-1) = 1.

4.Шифрование открытого числа m (где m < n) осуществляется путем вычисления mc mod n.

5.Расшифровка зашифрованного числа c осуществляется путем вычисления cd mod m.

Основным недостатком шифра RSA и других алгоритмов с открытым ключом является их низкая производительность, по сравнению с алгоритмами с секретным ключом. Алгоритм RSA уступает по скорости сопоставимым реализациям алгоритма DES в 100, а то и в 1000 раз.

Хотя шифр RSA еще никому не удалось раскрыть, прогресс в математике может сделать этот шифр устаревшим. При наличии эффективного способа разложения больших чисел на множители шифр RSA можно легко раскрыть. К тому же алгоритм RSA и другие алгоритмы с открытым ключом не защищены от множества атак, которые определяются способами использования этих алгоритмов.

Алгоритм AlGamal. Хотя RSA и является одним из самых популярных алгоритмов шифрования с открытым ключом, имеется также множество других алгоритмов. Один из них – алгоритм AlGamal, разработанный в 1984 г. Тэгером Эль-Гамалом. Он не запатентован и может использоваться свободно.

Защищенность алгоритма AlGamal базируется на сложности вычисления дискретного логарифма в конечном поле. А заключается алгоритм в следующем.

1. Выбирается простое число p и два случайных числа, g и x, меньших чем p.

2. Открытый ключ состоит из чисел g, p, и y, где y=gx mod p. Закрытым ключом является число x.

3. Для шифрования блока сообщения m, выбирается случайное чтило k, такое, что k и (p-1) взаимно простые числа, и вычисляется a=gk mod p. Зашифрованным блоком являются оба числа – a и b.

4. Для расшифровки a и b вычисляется m=(b/ax) mod p.

Шифрование с секретным ключом. В некоторых алгоритмах шифрования для шифрования и расшифровки используется один и тот же ключ, или дешифровальный ключ может быть вычислен по шифровальному ключу за небольшое время. Такие алгоритмы называются алгоритмами с секретным ключом, алгоритмами с закрытым ключом или симметричными алгоритмами. Ключ, используемый в таких алгоритмах, должен храниться в тайне. Примером алгоритма с секретным ключом является алгоритм Data Encryption Stantart (DES).

В 1997 г. в США Национальным Институтом Стандартов и Технологий (NIST) в качестве стандартного алгоритма шифрования для защиты несекретной информации был принят алгоритм DES. Этот алгоритм вполне уверенно противостоял открытым попыткам взлома вплоть до середины 90-х годов, когда были отмечены попытки взлома с использованием методов дифференциального и линейного криптоанализа. К январю 1999 г. фонду Electronic Frontier Foundation уже удавалось взламывать сообщения, зашифрованные с помощью алгоритма DES, не более чем за сутки.

Несмотря на свою уязвимость, этот алгоритм все еще используется в некоторых приложениях и обеспечивает достаточно высокий уровень защиты в тех случаях, когда затраты на расшифровку информации превышают ее ценность. Например, расшифровка информации, содержащейся в моей кредитной карточке, будь она зашифрована по алгоритму DES, обойдется намного дороже, чем сумма, которую можно будет извлечь в результате этого. К тому же, DES уже используется в нескольких более сложных алгоритмах шифрования, таких, например, как TripleDES.

Алгоритм DES может быть использован в различных методах шифрования, в зависимости от назначения. Вот несколько примеров методов шифрования:

Метод ECB (Electronic Codebook – Электронная шифровальная книга) – шифрование осуществляется 8-и-байтовыми блоками, причем последующий блок зашифрованного текста не зависит от предыдущих блоков как зашифрованного, так и открытого текста.

Метод CBC (Cipher Block Changing – Сцепление зашифрованных блоков) – n-ный блок шифруемого текста получается в результате выполнения операции XOR (исключающего или) над (n-1)-м блоком защифрованного текста и n-ным блоком открытого текста.

Метод CFB (Cipher Feedback – Обратная связь по шифру) – предыдущая порция зашифрованного текста объединяется со следующей порцией открытого текста.

Метод OFB (Output Feedback – Обратная связь по выходу) – алгоритм DES используется для создания псевдослучайного потока битов, который объединяется с открытым текстом, в результате чего создается поток зашифрованного текста.

Метод PCBC (Propagating Cipher Block Changing – Сцепление зашифрованных блоков с множественной связью) – Отличается от метода CBC тем, что с n-ным блоком зашифрованного текста объединяется как (n-1)-й блок зашифрованного текста, так и (n-1)-й блок открытого текста.

Алгоритм DESede.В связи с популярностью алгоритма DES и его недостатками, выявленными во второй половине 90-х годов, криптографы искали способы повышения его стойкости, при одновременном сохранении его в качестве базового алгоритма шифрования. В алгоритмах DESede выполняется троекратное шифрование по алгоритму DES, что приводит к эффективной длине ключа в 168 разрядов. В одном из вариантов DESede третий ключ равен первому, эффективная длина ключа в таком случае составляет 112 разрядов.

Алгоритм Blowfish Blowfish – это шифр с секретным ключом, разработанный Брюсом Шейнером, ведущим специалистом-криптографом, автором нашумевшей книги Applied Cryptography (Прикладная криптография). Этот алгоритм не запатентован, он бесплатный и беспошлинный, и на его использование не требуется лицензии. Blowfish является 64-х-разрядным блочным шифром, предназначенным для встраиваемой замены алгоритма DES. Он превосходит DES по скорости шифрования и намного – по стойкости. Длина его ключа варьируется от 32-х до 448-и разрядов.

Цифровые подписи и цифровые сертификаты

 

Цифровые подписи обеспечивают замечательную возможность узнавать то, было ли сообщение (или иной объект) случайно или преднамеренно изменено. Цифровые сертификаты позволяют установить было ли сообщение действительно создано конкретным лицом или организацией.

Цифровая подпись – это значение, которое вычисляется из последовательности байтов с использованием секретного ключа. Она свидетельствует о том, что владелец этого секретного ключа подтвердил корректность и подлинность содержимого сообщения. В методах цифровой подписи часто используются алгоритмы шифрования с открытым ключом, но несколько иначе, чем обычно, а именно: закрытый ключ применяется для шифрования, а открытый – для расшифровки. На практике это выглядит следующим образом:

а) Создается цифровая подпись:

1) вычисляется дайджест сообщения;

2) дайджест сообщения зашифровывается с помощью закрытого ключа из пары “открытый/закрытый ключ”, в результате чего получается цифровая подпись;

б) Производится верификация цифровой подписи

1) подпись расшифровывается с помощью открытого ключа из вышеупомянутой пары “открытый/закрытый ключ ”, в результате чего восстанавливается дайджест сообщения;

2) значение расшифрованного дайджеста сообщения расшифровывается и сравнивается со значением дайджеста сообщения вычисленного из исходного сообщения.

Если оба значения дайджеста сообщения совпадают, то подпись подлинная. В противном случае или подпись, или сообщение были изменены.

Описанный выше подход к созданию и проверке подписей несет в себе как характерные черты реальных подписей, так и другие особенности, которые обеспечивают следующие возможности:

- подпись нельзя подделать – подписавшее лицо использует для подписи закрытый ключ, а он является секретным;

- подлинность подписи всегда можно проверить – поскольку открытый ключ подписавшего лица общедоступен, любое лицо, имеющее в руках сообщение и цифровую подпись может проверить, что сообщение было подписано данным лицом и что ни оно, ни подпись не были изменены;

- подпись неповторима – каждому сообщению соответствует своя, неповторимая подпись. Невозможно численными методами использовать подписи вместе с другим сообщением;

- факт подписи невозможно отрицать – после того, как сообщение подписано и отослано вместе с подписью, лицо, сделавшее это, не может отрицать, что оно сделало это (если только не докажет, это закрытый ключ был похищен).


<== предыдущая лекция | следующая лекция ==>
Лекция 2. Особенности применения криптографических методов | Лекция 4. Назначение межсетевых экранов
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 902; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.