Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Прототип и жизненный цикл экспертной системы




 

При разработке практически всех инструментальных средств за основу принимается методология автоматизации проектирования на базе использования прототипов. По отношению к программному обеспечению термин прототип означает "работающую модель программы, которая функционально эквивалентна подмножеству конечного продукта". Идея состоит в том, чтобы на ранней стадии работы над проектом разработать упрощенную версию конечной программы, которая могла бы послужить доказательством продуктивности основных идей, положенных в основание проекта. Прототип должен быть способен решать какую-либо из нетривиальных задач, характерных для заданной области применения. На основе анализа опыта работы с прототипом разработчики могут уточнить требования к системе в целом и ее Основным функциональным характеристикам. Работоспособность прототипа может послужить очевидным доказательством возможности решения проблем с помощью создаваемой системы еще до того, как на ее разработку будут потрачены значительные средства.

После всестороннего анализа прототип откладывается в сторону и начинается разработка рабочей версии программы, которая должна решать весь комплекс задач, определенных в спецификации проекта. Процесс разработки экспертной системы, как правило, состоит из последовательности отдельных этапов, на которых наращиваются возможности системы, причем каждый из этапов подразделяется на фазы проектирования, реализации, компоновки и тестирования. В результате после каждого этапа наращивания возможностей в распоряжении пользователя имеется система, которая способна справляться со все более сложными вариантами проблемы.

Такая методика проектирования несколько отличается от методики разработки программ других видов. При создании большинства программных продуктов чаще используется другая модель процесса- сначала разрабатывается спецификация продукта, затем выполняется планирование, проектирование компонентов, их реализация, компоновка комплекса и тестирование конечного варианта. Тот факт, что при разработке экспертных систем есть возможность сначала построить и всесторонне испытать прототип, позволяет избежать множества переделок в процессе создания рабочей версии системы. Но технология последовательного наращивания функциональных возможностей таит в себе и проблему интеграции новых функций с реализованными в предыдущих вариантах. Инструментальные средства разработки экспертных систем и создавались, в первую очередь, с целью преодоления возникающих при этом сложностей на основе модульного представления знаний.

При неудовлетворительном функционировании прототипа эксперт и инженер по знаниям имеют возможность оценить, что именно будет включено в разработку окончательного варианта системы.

Если первоначально выбранные объекты или свойства оказываются неподходящими, их необходимо изменить. Можно сделать оценку общего числа эвристических правил, необходимых для создания окончательного варианта экспертной системы. Иногда при разработке промышленной системы выделяют дополнительные этапы: демонстрационный прототип; исследовательский прототип; действующий прототип; промышленная система.

Однако чаще реализуется плавный переход от демонстрационного прототипа к промышленной системе, при этом, если программный инструментарий выбран удачно, необязательна перепись другими программными средствами.

Понятие же коммерческой системы в нашей стране входит в понятие промышленный программный продукт, или промышленной ЭС в этой работе.

Переход от прототипа к промышленной экспертной системе.

Демонстрационный прототип ЭС. Система решает часть задач, демонстрируя неспособность подхода (несколько десятков правил или понятий)

Исследовательский прототип. ЭС Система решает большинство задач, но не устойчива в работе и не полностью проверена [несколько сотен правил или понятий). Действующий прототип ЭС. Система надежно решает все задачи на реальных примерах, но для сложной задачи требует много времени и памяти.

Промышленная система. Система обеспечивает высокое качество решений при минимизации требуемого времени и памяти: переписывается с использованием более эффективных средств представления знаний. Коммерческая система Промышленная система, пригодная к продаже, т.е. хорошо документирована и снабжена сервисом

Основное на этом этапе заключается в добавлении большого числа дополнительных эвристик. Эти эвристики обычно увеличивают глубину системы, обеспечивая большее число правил для трудноуловимых аспектов отдельных случаев. В то же время эксперт и инженер по знаниям могут расширить охват системы, включая правила, управляющие дополнительными подзадачами или дополнительными аспектами экспертной задачи (метазнания).

После установления основной структуры ЭС инженер по знаниям приступает к разработке и адаптации интерфейсов, с помощью которых система будет общаться с пользователем и экспертом. Необходимо обратить особое внимание на языковые возможности интерфейсов, их простоту и удобство для управления работой ЭС. Система должна обеспечивать пользователю возможность легким и естественным образом спрашивать непонятное, приостанавливать работу и т.д. В частности, могут оказаться полезными графические представления.

Жизненный цикл экспертной системы состоит из этапов разработки и сопровождения. На этапе разработки создается программное обеспечение и база знаний экспертной системы, на этапе сопровождения происходит исправление выявленных ошибок и пополнение базы знаний без участия разработчиков (если последнее допускается архитектурой экспертной системы).

Применение экспертной системы с базой знаний, неизменяемой в процессе эксплуатации, возможно при достаточно стабильной в течение длительного времени предметной области, в которой решаются задачи. Примерами таких предметных областей являются разделы математического анализа, описание правил диагностики различных заболеваний.

Примерами областей применения, требующих гибкости со стороны создания и пополнения базы знаний, являются: планирование производства, проектирование и диагностика в области электроники, вычислительной техники и машиностроения.

 

Лекция 11. Автоматическое рассуждение. Основные механизмы дедукции (логического вывода)

Заставить машину выполнять простой процесс рассуждений несложно. Эта способность составляет ядро большинства ЭС. В целом знания ЭС должны быть введены в форме правил для того, чтобы могли быть реализованы процессы автоматического рассуждения. Как уже говорилось выше, та часть программы, которая применяет правила, а затем управляет рассуждениями, получила название механизма вывода.

Логический вывод - центральное понятие в ЭС. Оно имеет два аспекта: 1) использование рассуждений для нахождения различных предположений, которые обусловлены имеющимися фактами и правилами, или 2) для изучения заключений, которые представляют интерес и могут быть истинными. Первый метод носит название прямой цепочки рассуждений, второй - обратной цепочки рассуждений. Почти все экспертные системы построены либо на первом, либо на втором методе.

Прямая цепочка рассуждений предполагает использование правил для дудукции (логического вывода) новых фактов, а также фактов, которые существовали и ранее, но могут быть сделаны явными посредством применения правил. Механизм вывода циклически просматривает все правила, исследуя их по очереди выясняя, является ли информация на левой стороне истинной. Если она истинна, механизм вывода добавляет факт на правой стороне правила к хранимым истинным фактам. Затем он переходит к следующему правилу, и процесс повторяется. Проверив все правила, механизм начинает работу заново. Т.о. механизм вывода работает для пополнения изначального запаса истинных фактов фактами, которые подразумеваются посредством набора правил.

Однако, в системе с реальным числом правил имеется столь много подразумеваемых (скрытых) фактов, что, будучи обнаружены, они затмят те несколько фактов, которые действительно представляют интерес и являются полезными. В подобных случаях система должна иметь дополнительный механизм (в зависимости от проблемы) для того, чтобы определить, с каким следующим правилом ей предстоит работать. Вместо простого цикла, который механически выбирает правила, механизм выбора четко устанавливает приоритет выбора тех или иных фактов и правил. ЭС на базе прямой цепочки рассуждений чаще всего применяют в планировании или проектировании.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1267; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.