Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Линейная модель торговли. Динамическая модель межотраслевого баланса




Динамическая модель межотраслевого баланса.

Лекция 17. Модели межотраслевого баланса.

17.1. Статическая модель межотраслевого баланса – модель Леонтьева.

 

17.1. Статическая модель межотраслевого баланса – модель Леонтьева.

Макроэкономика функционирования многоотраслевого хозяйства требует баланса между отдельными отраслями. Каждая отрасль с одной стороны, является производителем, а с другой – потребителем продукции, выпускаемой другими отраслями. Возникает довольно непростая задача расчета связи между отраслями через выпуск и потребление продукции разного вида. Впервые эта проблема была сформулирована в виде математической модели в 1936 году в трудах известного американского экономиста В.В. Леонтьева, который попытался проанализировать причины экономической депрессии США 1929 – 1932 гг. Эта модель основана на алгебре матриц и использует аппарат матричного исчисления.

Предположим, что рассматривается n отраслей промышленности, каждая из которых производит свою продукцию. Часть продукции идет на внутрипроизводственное потребление данной отраслью и другими отраслями, а другая часть предназначена для целей конечного (вне сферы материального производства) личного и общественного потребления.

Рассмотрим процесс производства за некоторый период времени (например, год).

Введем обозначения:

Xi – общий (валовой) объем продукции i -й отрасли (i=);

Xij – объем продукции i -й отрасли, потребляемый j -й отраслью в процессе производства (i,j =);

Yi – объем конечного продукта i -й отрасли для непроизводственного потребления (i =).

Балансовый принцип связи различных отраслей промышленности состоит в том, что валовой выпуск i -й отрасли должен быть равным сумме объемов потребления в производственной и внепроизводственной сферах:

(i=) (1)

Уравнения (1) называются соотношениями баланса. Будем рассматривать стоимостный межотраслевой баланс, когда все величины, входящие в (1), имеют стоимостное выражение.

Введем коэффициенты прямых затрат (i,j =), показывающие затраты продукции i -й отрасли на производство единицы продукции j -й отрасли. Можно считать, что в некотором промежутке времени коэффициенты будут постоянными и зависящими от сложившейся технологии производства. Это означает линейную зависимость материальных затрат от валового выпуска, то есть (i,j =), вследствие чего построенная на этом основании модель межотраслевого баланса получила название линейной. Соотношения баланса теперь примут вид , (i =)(2). Обозначим

, , , где X – вектор валового выпуска, Y – вектор конечного продукта, A - матрица прямых затрат.

Систему (2) можно записать в матричной форме (3)

Основная задача межотраслевого баланса состоит в отыскании такого вектора валового выпуска X, который при известной матрице прямых затрат A обеспечивает заданный вектор конечного продукта Y.

Перепишем уравнение (3) в виде: (4). Если , то - решение уравнения (3). Матрица называется матрицей полных затрат, каждый элемент которой является величиной валового выпуска продукции i -й отрасли, необходимого для обеспечения выпуска единицы конечного продукта j -й отрасли .

В соответствии с экономическим смыслом задачи значения при и .

Матрица называется продуктивной, если для любого вектора существует решение матричного уравнения (4).

Теорема (Критерий продуктивности матрицы).

Для того, чтобы матрица A была продуктивна, необходимо и достаточно, чтобы: 1)для любых ; 2)для любого ; 3)существует номер .

Пример.

В таблице приведены данные об исполнении баланса за отчетный период, усл. ден. ед.

Отрасль Потребление Конечный продукт Валовой выпуск
Энергетика Машиностроение
Производство Энергетика        
Машиностроение        

 

Вычислить необходимый объем валового выпуска каждой отрасли, если конечное потребление энергетической отрасли увеличится в 1,2 раза, а машиностроительной останется на прежнем уровне.

Решение.

Составим матрицу A прямых затрат , она имеет неотрицательные элементы и удовлетворяет критерию продуктивности: 0,07+0,12=0,19<1; 0,14+0,10=0,24.

Для любого вектора конечного продукта Y можно найти необходимый объем валового выпуска .

Найдем матрицу полных затрат .

, , .

По условию вектор конечного продукта , тогда , то есть валовой выпуск в энергетической отрасли надо увеличить до 314,56 усл. ед., а в машиностроительной – до 364,30 усл. ед..




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 368; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.