Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Работа выхода из металла. Термоэлектронная эмиссия




Недостатки классической электронной теории проводимости металлов

Связь между теплопроводностью и электропроводностью металлов (закон Видемана-Франца)

Вывод закона Джоуля-Ленца в дифференциальной форме в классической теории электропроводности

Вывод закона Ома в дифференциальной форме в классической электронной теории

Основы классической электронной теории электропроводности металлов

Исходя из представлений о свободных электронах, Друде разработал классическую теорию электропроводности металлов, которая затем была усовершенствована Лоренцем. Друде предположил, что электроны проводимости в металле ведут себя подобно молекулам идеального газа. В промежутках между соударениями они движутся совершено свободно, пробегая в среднем некоторый путь . Правда в отличие от молекул газа, пробег которых определяется соударениями молекул друг с другом, электроны сталкиваются преимущественно не между собой, а с ионами, образующими кристаллическую решетку металла. Эти столкновения приводят к установлению теплового равновесия между электронным газом и кристаллической решеткой. Полагая, что на электронный газ могут быть распространены результаты кинетической теории газов, оценку средней скорости теплового движения электронов можно произвести по формуле . Для комнатной температуры ( 300К) вычисление по этой формуле приводит к следующему значению: . При включении поля на хаотическое тепловое движение, происходящее, со скоростью , накладывается упорядоченное движение электронов с некоторой средней скоростью . Величину этой скорости легко оценить, исходя из формулы, связывающей плотность тока j с числом n носителей в единице объема, их зарядом е и средней скоростью :

(18.1)

Предельная допустимая техническими нормами плотность тока для медных проводов составляет около 10 А/мм2 = 107 А/м2. Взяв для n=1029 м-3, получим

Таким образом, даже при больших плотностях тока средняя скорость упорядоченного движения зарядов в 108 раз меньше средней скорости теплового движения .

Друде считал, что сразу после очередного соударения электрона с ионом кристаллической решетки скорость упорядоченного движения электрона равна нулю. Предположим, что напряженность поля не изменяется. Тогда под действием поля электрон получит постоянное ускорение равное

и к концу пробега скорость упорядоченного движения достигнет значения

(18.2)

где t - среднее время между двумя последовательными соударениями электрона с ионами решетки. Друде не учитывал распределение электронов по скоростям и приписывал всем электронам одинаковое значение средней скорости . В этом приближении , где - среднее значение длины свободного пробега, - скорость теплового движения электронов. Подставим это значение t в формулу (18.2)

Скорость изменяется за время пробега линейно. Поэтому ее среднее (за пробег) значение равно половине максимального

Подставив это выражение в

получим

Плотность тока оказалась пропорциональной напряженности поля. Следовательно, мы получили закон Ома. Согласно коэффициент пропорциональности между j и Е представляет собой проводимость

(18.3)

Если бы электроны не сталкивались с ионами решетки, длина свободного пробега, а, следовательно, и проводимость были бы бесконечно велики. Таким образом, электрическое сопротивление металлов обусловлено соударениями свободных электронов с ионами.

К концу свободного пробега электрон приобретает скорость , и, следовательно, дополнительную кинетическую энергию, средняя величина которой

Столкнувшись с ионом, электрон по предположению полностью теряет приобретенную им за время пробега скорость, и передает энергию кристаллической решетке. Эта энергия идет на увеличение внутренней энергии металла, проявляющееся в его нагревании. Каждый электрон претерпевает за секунду в среднем 1/t соударений, сообщая всякий раз решетке энергию . Следовательно, в единице объема за единицу времени должно выделяться тепло

где n - число электронов проводимости в единице объема. Величина есть не что иное, как удельная мощность тока. Множитель при совпадает со значением (18.3) для закона Ома. Таким образом. Мы пришли к выражению закона Джоуля-Ленца в дифференциальной форме.

Из опыта известно, что наряду с высокой электропроводностью металлы отличаются также большой теплопроводностью. Видеман и Франц установили в 1853 г. эмпирический закон, согласно которому отношение коэффициента теплопроводности к коэффициенту электропроводности для всех металлов приблизительно одинаково и изменяется пропорционально абсолютной температуре. Способностью проводить тепло обладают и неметаллические кристаллы. Однако теплопроводность металлов значительно превосходит теплопроводность диэлектриков. Из этого можно заключить, что теплопередача в металлах осуществляется в основном не кристаллической решеткой, а электронами. Рассматривая электроны как одноатомный газ, для коэффициента теплопроводности можно заимствовать выражение кинетической теории газа

где - плотность газа; .

Тогда

(18.4)

Удельная теплоемкость одноатомного газа равна

Подставляя эти значения в выражение (18.4), получим

(18.5)

Разделив (18.5) на (18.3), имеем

Произведя замену приходим к соотношению

(18.6)

которое выражает закон Видемана-Франца, При T=300°К для отношения получается значение , очень хорошо согласующееся с экспериментальными данными.

Как было показано выше, отношение Произведенные Лоренцем, уточненные расчеты с учетом классического распределения по скоростям привели к замене в теоретической формуле множителя 3 на 2 и к резкому увеличению расхождения теории с опытом. Второе затруднение классической электронной теории возникло при сопоставлении с опытом формул для теплоемкостей. Согласно электронной теории теплоемкость единицы объема электронного газа равна , где n - концентрация свободных электронов. Теплоемкость, отнесенная к одному электрону, . Рассмотрим один кг - атом одновалентного металла. Он состоит из ионов, колеблющихся около своих положений равновесия, и свободных электронов. Колебательная теплоемкость твердого тела по закону Дюлонга и Пти равна , теплоемкость электронного газа

Следовательно, по электронной теории теплоемкость одновалентных металлов должна составлять . Однако опыт показывает, что теплоемкость металлов так же, как теплоемкость твердых диэлектриков, в соответствии с законом Дюлонга и Пти близка к 3R. Таким образом, обнаружилось неожиданное и непонятное явление практического отсутствия теплоемкости у электронного газа.

Третьим затруднением классической электронной теории металлов явилась невозможность правильно объяснить с ее помощью температурную зависимость сопротивления. Опыт показывает, что сопротивление металлических проводников линейно возрастает с температурой по закону

т.е. проводимость обратно пропорциональна абсолютной температуре в первой степени:

Согласно классической теории, проводимость обратно пропорциональна . Наконец, возникли трудности при оценке средней длины свободного пробега электронов в металле. Для того чтобы, пользуясь формулой (18.3), получить такие значения удельной электрической проводимости металла, которые не расходились бы с опытными, приходится принимать среднюю длину свободного пробега электронов в сотни раз большей, чем период решетки металла. Иными словами, приходится предположить, что электрон проходит без соударений с ионами решетки сотни межузельных расстояний. Такое предположение непонятно в рамках классической электронной теории Друде -Лоренца.

Приведенные выше противоречия указывают на то, что классическая электронная теория, представляя электрон как материальную точку, подчиняющуюся законам классической механики, не учитывала некоторых специфических свойств самого электрона, которые еще не были известны к началу XX века. Эти свойства были установлены позднее при изучении строения атома, и в 1924 г. была создана новая, так называемая квантовая или волновая механика движения электронов.

Электроны проводимости в металле находятся в беспорядочном движении. Наиболее быстро движущиеся электроны, обладающие достаточно большей кинетической энергией, могут вырываться из металла в окружающее пространство. При этом они совершают работу как против сил притяжения со стороны избыточного положительного заряда, возникающего в металле в результате их вылета, так и против сил отталкивания со стороны ранее вылетевших электронов, образующих вблизи поверхности проводника электронное “облако”. Между электронным газом, в металле и электронным «облаком” устанавливается динамическое равновесие. Работу, которую нужно совершить для удаления электрона из металла в вакуум называют работой выхода. Она равна , где е -заряд электрона, - потенциал выхода. Работа выхода производится электронами - за счет уменьшения их кинетической энергии. Поэтому понятно, что медленно движущиеся электроны вырваться из металла не могут. Работа выхода зависит от химической природы металла и состояния его поверхности загрязнения, следы влаги и пр. изменяют ее величину. Для чистых металлов работа выхода колеблется в пределах нескольких электронвольт. Электрон проводимости может вылететь из какого либо металла в том случае, если его энергия превышает работу выхода А электрона из металла. Явление испускания электронов нагретыми металлами называется термоэлектронной эмиссией.

Концентрация электронов проводимости в металле весьма велика; их тепловые скорости при данной температуре различны и распределены, по классическим представлениям, в соответствии с законом Максвелла. Это означает, что даже при средних температурах в металле имеется достаточно большое число электронов проводимости, способных совершить работу выхода и вылететь из металла. При этом работа выхода равна убыли кинетической энергии

где m, е - соответственно масса и заряд электрона, и - скорости электрона до и после выхода из металла. При обычных температурах количество электронов, имеющих скорость, достаточную для вылета, очень невелика. Существуют несколько способов сообщения электронам дополнительной энергии, необходимой для удаления их из металла: нагревание проводника (термоэлектронная эмиссия); облучение металлов видимым и ультрафиолетовым светом (фотоэлектронная эмиссия); воздействие ускоряющего внешнего электрического поля (автоэлектронная, или холодная эмиссия); бомбардировка металла электронами или ионами.

Для того чтобы получить значительный поток электронов, так называемый эмиттер нагревают до температур порядка 2000÷2500 К.

Для исследования термоэлектронной эмиссии можно использовать установку, состоящую из двух электродов - анода А и катода К, которые помещены в вакуум (рис.18.1). Катод выполнен в виде нити, анод - в виде коаксиального цилиндра. Катод, являющийся источником электронов, подогревается с помощью специальной батареи накала Бн.

Анодная батарея Ба служит для создания электрического поля Евн между катодом и анодом. Когда нить разогрета, возникает электронное, облако, несущее отрицательный заряд. В результате включения батареи Ба анода поток электронов начинает двигаться между катодом и анодом, т.е. в цепи начинает протекать электрический ток. Сила тока зависит от температуры нити,

напряжения Ua, которое создает анодная батарея, материала катода и геометрии электродов. Зависимость анодного тока, регистрируемого гальванометром G, от анодного напряжения I=f(Ua) называется вольт - амперной характеристикой установки.

Такую характеристику можно снять экспериментально, поддерживая напряжение накала постоянным и изменяя напряжение Ua (рис. 18.2). На этой вольт - амперной характеристике можно выделить три области. Область I соответствует тому случаю, когда к электродам прикладывается задерживающая разность потенциалов (к аноду подключается отрицательный полюс батареи), т.е. поле Е тормозит электроны. Однако ток в цепи все же идет потому, что часть электронов, вылетающих из раскаленной нити, имеет энергию, достаточную для преодоления задерживающей разности потенциалов. Эта часть вольт - амперной характеристики называется «кривой задержки”. Помимо электрического поля Евн, создаваемого анодной батареей, между катодом и анодом существующее поле обязанное своему возникновению летящими электронами. Электроны, движущиеся от катода к аноду, создают определенный объемный заряд, который вызывает электрическое поле Еоб будет тормозить электроны при их вылете из катода и ускорять при подлете к аноду. При увеличении разности потенциалов Ua поле Е0б будет уменьшаться. Поэтому все большее количество электронов станет долетать до анода и сила тока будет расти (область II).

При некотором значении разности потенциалов Ua=U0 суммарное поле Евн + Еоб у катода сделается равным нулю. При этом все вылетающие при данной температуре из катода электроны будут достигать анода. Поэтому дальнейшее повышение напряжения Ua не приведет к увеличению анодного тока I. Сила тока станет постоянной (область III). Такой ток называется током насыщения. Сила тока насыщения при прочих равных условиях зависит от температуры эмиттера. Зависимость плотности тока насыщения jH от абсолютной температуры Т удовлетворительно описывается формулой Ричардсона - Дэшмена.

(18.7)

где - средний коэффициент отражения электронов от границы эмиттер -вакуум, В - постоянная, зависящая от материала катода, А - работа выхода электрона, к - постоянная Больцмана.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1239; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.