КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 21. Обрабатываемость алюминиевых сплавов
Алюминиевые сплавы с точки зрения обрабатываемости можно разделить на три группы. К первой относятся сплавы низкой твердости, имеющие склонность к налипанию на инструмент, например дюралюминий в отожженном состоянии. Сплавы второй группы имеют более высокую твердость, не налипают на инструмент. К этой группе относятся термически упрочненный дюралюминий, а также кованые сплавы АК6, АК8 и др. В третью группу входят широко распространенные литые сплавы, содержащие кремний, в частности силумины различных марок. Для первых двух групп наиболее характерно образование сливной стружки в виде длинных лент или спиралей, для третьей — стружка легко дробится на короткие элементы. По сравнению со сталью алюминиевые сплавы обладают меньшей твердостью, более низким временным сопротивлением и лучшей теплопроводностью, что позволяет значительно повышать скорость резания и подачу. Однако выбор оптимальных условий обработки затруднен из-за совместного действия целого ряда факторов. Высокая вязкость ряда алюминиевых сплавов интенсифицирует налипание частиц на рабочие поверхности режущего инструмента. Это затрудняет стружкоотвод, может вызвать пакетирование стружки в канавках инструмента и образование задиров на обработанной поверхности. При нагревании алюминий сильно расширяется (в 2 раза больше, чем сталь). Это препятствует достижению высокой точности обработки, например при развертывании. Уровень сил резания при обработке алюминиевых сплавов в 2…4 раза ниже, чем при обработке конструкционных сталей. Характер влияния элементов режима резания и переднего угла на силу резания такой же, как при обработке сталей. Алюминиевые сплавы склонны к наростообразованию. Этот процесс протекает чрезвычайно активно в связи с повышенной адгезионной активностью алюминия к материалам, используемым в качестве инструментальных. Поэтому максимальная высота нароста и его исчезновение отмечаются для алюминиевых сплавов при относительно более низких скоростях резания, чем для сталей. Между уровнем сил резания и механических свойств алюминиевых сплавов нет отчетливой зависимости. Очевидно, последние оказывают сложное совокупное влияние на сопротивление металла пластическому деформированию при образовании стружки и на ее трение о переднюю поверхность инструмента. В целом при повышении прочности сплавов уровень сил резания увеличивается. Связь между силами резания и характером микроструктуры алюминиевых сплавов следующая: сила резания выше при обработке сплавов с равномерной структурой, когда содержание твердого раствора кремния в алюминии преобладает над содержанием эвтектики; если частицы эвтектики имеют более грубую пластинчатую форму, силы резания меньше. Уровень допустимых скоростей резания, обеспечивающих низкую шероховатость обработанной поверхности и нормативные периоды стойкости, при обработке алюминиевых сплавов в несколько раз выше, чем при обработке сталей. Обрабатываемость алюминиевых сплавов можно значительно улучшить за счет применения оптимальных геометрических и конструктивных параметров инструментов, тщательной доводки их режущих кромок и правильного выбора технологической среды. Необходимо конструктивно обеспечивать свободное размещение стружки в канавках инструмента. Они должны иметь гладкие поверхности с плавными переходами, что уменьшает возможность налипания на них стружки. Передние углы инструмента рекомендуются для сплавов первой группы 25...40°; для второй — 10...25° и третьей — 10…15°. Использование технологических сред наиболее эффективно при чистовой обработке, когда лимитирующим показателем обрабатываемости является шероховатость обработанной поверхности. Выше отмечалось, что резание алюминиевых сплавов сопровождается интенсивным наростообразованием. Поэтому для снижения шероховатости необходимо работать вне зоны нароста либо применять эффективные СОТС. Однако многие операции на современном оборудовании невозможно выполнять на режимах, исключающих наростообразование. Используемые на производстве СОТС на базе керосина или присадок с хлором, фосфором и другими элементами не всегда удовлетворяют санитарно-гигиеническим и противопожарным нормам. При использовании эмульсий высокие требования к качеству обработанной поверхности не обеспечиваются. При ужесточении таких требований рекомендуется применять масляные СОЖ. В них можно добавлять специальные присадки, способствующие уменьшению трения и массопереноса за счет создания алюминийорганических и высокомолекулярных соединений на площадках контакта.
Дата добавления: 2014-01-07; Просмотров: 1396; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |