КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Трудности циклов
Возможность повторять некоторые вычисления произвольное число раз, не поддаваясь усталости, без случайных потерь чего-либо важного, - в этом принципиальное отличие компьютерных вычислений от возможностей человека. Вот почему циклы так важны. Трудно вообразить, что можно было бы делать в языках, в которых были бы только две управляющие структуры - последовательность и выбор, - но не было бы циклов и не было бы поддержки рекурсии, еще одного базисного механизма поддержки итеративных вычислений. Но с мощностью приходят и риски. У циклов дурная слава, - их трудно заставить работать правильно. Типичными для циклов являются: [x]. Ошибки "больше-меньше" (выполнение цикла слишком много или слишком мало раз). [x]. Ошибки управления пограничными ситуациями, например пустыми структурами. Цикл может правильно работать на больших массивах, но давать ошибки, когда у массива один элемент или он вообще пуст. [x]. Ошибки завершения ("зацикливание") в некоторых ситуациях. Бинарный поиск - один из ключевых элементов базового курса "Введение в информатику" (Computer Science 101) - хорошая иллюстрация "коварства" циклов даже в относительно тривиальной ситуации. Рассмотрим целочисленный, упорядоченный по возрастанию массив t с индексами от 1 до n. Используем алгоритм бинарного поиска для ответа на вопрос: появляется ли целое x среди элементов массива. Если массив пуст, ответ должен быть "нет", если в массиве ровно один элемент, то ответ "да" тогда и только тогда, когда элемент массива совпадает с x. Суть бинарного поиска, использующего упорядоченность массива, проста: вначале x сравнивается со средним элементом массива, если есть совпадение, то задача решена, если x меньше среднего элемента, то поиск продолжается в верхней половине массива, в противном случае - в нижней половине. Каждое сравнение уменьшает размер массива вдвое. Ниже представлены четыре попытки реализации этой простой идеи. К несчастью, все они содержат ошибки. Вам предоставляется случай поупражняться в поиске ошибок и установить, в какой ситуации каждый из алгоритмов не работает нужным образом. Напомню, t @ m означает элемент массива t с индексом m. Знак операции // означает деление нацело, так что 7 // 2 и 6 // 2 дают значение 3. Синтаксис цикла будет дан ниже, но он должен быть и так понятен. Предложение from вводит инициализацию цикла. BS1 from i:= 1; j:= n until i = j loop m:= (i + j) // 2 if t @ m <= x then i:= m else j:= m end end Result:= (x = t @ i)
BS2 from i:= 1; j:= n; found:= false until i = j and not found loop m:= (i + j) // 2 if t @ m < x then i:= m + 1 elseif t @ m = x then found:= true else j:= m - 1 end end Result:= found
BS3 from i:= 0; j:= n until i = j loop m:= (i + j + 1) // 2 if t @ m <= x then i:= m + 1 else j:= m end end if i >= 1 and i <= n then Result:= (x = t @ i) else Result:= false end
BS4 from i:= 0; j:= n + 1 until i = j loop m:= (i + j) // 2 if t @ m <= x then i:= m + 1 else j:= m end end if i >= 1 and i <= n then Result:= (x = t @ i) else Result:= false end
Таблица 11.3. Четыре (ошибочных) попытки реализации бинарного поиска
Дата добавления: 2014-01-07; Просмотров: 281; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |