КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Устранение посредника
Пример
Предположим, я написал класс MATRIX, реализующий операции линейной алгебры. Среди прочих возможностей я предлагаю своим клиентам подпрограмму расчета обратной матрицы. Фактически это сочетание команды и двух запросов: процедура invert инвертирует матрицу, присваивает атрибуту inverse значение обратной и устанавливает логический атрибут inverse_valid. Значение атрибута inverse имеет смысл тогда и только тогда, когда inverse_valid является истинным; в противном случае матрицу инвертировать не удалось, так как она вырождена. В ходе нашего обсуждения случай вырожденной матрицы мы можем проигнорировать. Конечно же, я могу найти лишь приближенное значение обратной матрицы и готов гарантировать определенную точность расчетов, однако, не владея численными подпрограммами в совершенстве, буду принимать лишь запросы с точностью не выше 10-6. В итоге, моя подпрограмма будет выглядеть приблизительно так:
invert (epsilon: REAL) is -- Обращение текущей матрицы с точностью epsilon require epsilon >= 10 ^ (-6) do "Вычисление обратной матрицы" ensure ((Current * inverse) |-| One) <= epsilon end
Постусловие предполагает, что класс содержит инфиксную функцию infix "|-|" такую, что m1 |-| m2 есть |m1 - m2| (норма разности матриц m1 и m2), а также функцию infix "*", результатом которой является произведение двух матриц. One - единичная матрица. Как человек негордый, летом я приглашу программиста, и он перепишет мою подпрограмму invert, используя более удачный алгоритм, лучше аппроксимирующий результат и допускающий меньшее значение epsilon (как повторное объявление, эта запись синтаксически некорректна:
require epsilon >= 10 ^ (-20) ... ensure ((Current * inverse) |-| One) <= (epsilon / 2)
Автор новой версии достаточно умен, чтобы не переписывать MATRIX в целом. Изменения коснутся лишь нескольких подпрограмм. Они будут включены в состав порожденного от MATRIX класса NEW_MATRIX. Если повторное объявление содержит новые утверждения, они должны иметь иной синтаксис, нежели приведенный выше. Правило появится чуть позднее.Изменения, внесенные в утверждения, удовлетворяют правилу повторного объявления: новое предусловие epsilon >= 10 ^ (-20) слабее исходного epsilon >= 10 ^ (-6), новое же постусловие сильнее сформулированного вначале. Вот как все должно происходить. Клиент исходного класса MATRIX запрашивает расчет обратной матрицы именно у него, но на деле - ввиду динамического связывания - вызывает реализацию класса NEW_MATRIX. Тот же клиент может иметь в своем составе подпрограмму
some_client_routine (m1: MATRIX; precision: REAL) is do ...; m1.invert (precision);... -- Возможен вызов версии как MATRIX, так и NEW_MATRIX end
которой один из его собственных клиентов передает первый параметр типа NEW_MATRIX. NEW_MATRIX должен воспринимать и корректно обрабатывать любой вызов, который принимается его предком. Используя более слабое предусловие и более сильное постусловие, мы корректно обработаем все обращения клиентов MATRIX и предложим своим клиентам решение, лучше прежнего. При усилении предусловия invert, например, epsilon >= 10 ^ (-5), вызов, корректный для класса MATRIX, мог стать теперь некорректным. При ослаблении постусловия возвращаемый результат стал бы хуже, чем гарантируемый для MATRIX.
Последний комментарий указывает на весьма интересное следствие правила Утверждений Переобъявления. В общей схеме Рис. 16.3. Подпрограмма, клиент и подрядчик утверждения γ и, введенные при повторном объявлении, предпочтительнее для клиентов, если они отличаются от и β (предусловия - более слабые, постусловия - более сильные). Но клиент класса A, использующий A' благодаря полиморфизму и динамическому связыванию, не может в полной мере воспользоваться более выгодным контрактом, ибо единственный контракт клиента заключен с классом A. Воспользоваться преимуществом нового контракта можно лишь став непосредственным клиентом A' (пунктирная связь с вопросительным знаком на рисунке 16.3), как в случае:
a1: A' ... if a1.γ then a1.r end check a1. end -- постусловие выполняется
При этом вы, естественно, объявляете a1 как объект типа A', а не объект типа A, как прежде. В результате теряется универсальность полиморфизма, идущая от A. Компромисс ясен. Клиент класса MATRIX должен обеспечивать выполнение исходного (более сильного) предусловия, а в ответ вправе ожидать выполнения исходного (более слабого) постусловия. Даже если его запрос динамически подготовлен к обслуживанию классом NEW_MATRIX, воспользоваться новыми возможностями - большей толерантностью входа и большей точностью выхода - ему никак не удастся. Для обращения к улучшенной спецификации клиент должен объявить матрицу типа NEW_MATRIX, тем самым, потеряв доступ к иным порожденным от MATRIX реализациям, не являющимся производными классами самого NEW_MATRIX.
Дата добавления: 2014-01-07; Просмотров: 351; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |