Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кинематические характеристики вращательного движения. Угловая скорость и угловое ускорение




При вращательном движении все точки тела описывают окружности, при этом радиус-векторы поворачиваются на угол за время . Для того, чтобы указать, в какую сторону совершается поворот, элементарные повороты изображают в виде вектора . По модулю равен величине угла поворота, а направление подчиняется правилу правого винта (рис. 1.6). Быстроту вращения характеризует угловая скорость .

Рис.1.6

Угловой скоростью называется производная от угла поворота по времени.
Модуль угловой скорости равен

Вектор угловой скорости направлен вдоль оси вращения по правилу правого винта (рис. 1.6). При равномерном вращении угловая скорость связана с периодом обращения Т и частотой вращения следующим образом

Модуль угловой скорости выражается в радианах в секунду (рад/с). Быстрота изменения угловой скорости характеризуется угловым ускорением .

Угловым ускорением называется производная от угловой скорости по времени. Модуль углового ускорения равен

При вращении тела вокруг неподвижной оси угловое ускорение также как и угловая скорость направлено вдоль оси вращения. При ускоренном движении эти вектора сонаправлены , при замедленном - противоположны . Угловое ускорение измеряется в рад/с2.

При равномерном вращении

.

При равнопеременном вращении

где - начальная угловая скорость.
Знак "+" - при равноускоренном движении.
Знак "-" - при равнозамедленном движении.


1.1.8. Связь между линейной и угловой скоростью, линейным и угловым ускорением

При вращении твердого тела вокруг неподвижной оси линейные скорости и линейные (тангенциальные) ускорения для различных его точек будут различны. Угловая скорость и угловое ускорение будут одинаковыми для всех точек вращающегося тела.

Для того чтобы найти связь между модулями линейной и угловой скорости нужно использовать известное в геометрии соотношение между центральным углом и дугой, на которую он опирается (рис. 1.6)

.

Отсюда:

.

Используя формулы (1.5) и (1.12), получим

Формула (1.15) показывает, что линейная скорость равна угловой, умноженной на радиус.

Чтобы найти связь между модулями линейного (тангенциального) и углового ускорений, продифференцируем формулу (1.15)

Воспользуемся формулами (1.10) и (1.14) и получим

Из формулы (1.16) следует, что линейное (тангенциальное) ускорение равно угловому, умноженному на радиус.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 5379; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.