КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Кинематические характеристики вращательного движения. Угловая скорость и угловое ускорение
При вращательном движении все точки тела описывают окружности, при этом радиус-векторы поворачиваются на угол за время . Для того, чтобы указать, в какую сторону совершается поворот, элементарные повороты изображают в виде вектора . По модулю равен величине угла поворота, а направление подчиняется правилу правого винта (рис. 1.6). Быстроту вращения характеризует угловая скорость . Рис.1.6 Угловой скоростью называется производная от угла поворота по времени. Вектор угловой скорости направлен вдоль оси вращения по правилу правого винта (рис. 1.6). При равномерном вращении угловая скорость связана с периодом обращения Т и частотой вращения следующим образом Модуль угловой скорости выражается в радианах в секунду (рад/с). Быстрота изменения угловой скорости характеризуется угловым ускорением . Угловым ускорением называется производная от угловой скорости по времени. Модуль углового ускорения равен При вращении тела вокруг неподвижной оси угловое ускорение также как и угловая скорость направлено вдоль оси вращения. При ускоренном движении эти вектора сонаправлены , при замедленном - противоположны . Угловое ускорение измеряется в рад/с2. При равномерном вращении . При равнопеременном вращении где - начальная угловая скорость.
При вращении твердого тела вокруг неподвижной оси линейные скорости и линейные (тангенциальные) ускорения для различных его точек будут различны. Угловая скорость и угловое ускорение будут одинаковыми для всех точек вращающегося тела. Для того чтобы найти связь между модулями линейной и угловой скорости нужно использовать известное в геометрии соотношение между центральным углом и дугой, на которую он опирается (рис. 1.6) . Отсюда: . Используя формулы (1.5) и (1.12), получим Формула (1.15) показывает, что линейная скорость равна угловой, умноженной на радиус. Чтобы найти связь между модулями линейного (тангенциального) и углового ускорений, продифференцируем формулу (1.15) Воспользуемся формулами (1.10) и (1.14) и получим Из формулы (1.16) следует, что линейное (тангенциальное) ускорение равно угловому, умноженному на радиус.
Дата добавления: 2014-01-07; Просмотров: 5379; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |