Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Полное соответствие




Оценка

 

Прежде чем мы сведем воедино все, что узнали о ковариантности и скрытии потомком, вспомним еще раз о том, что нарушения корректности систем возникают действительно редко. Наиболее важные свойства статической ОО-типизации были обобщены в начале лекции. Этот впечатляющий ряд механизмов работы с типами совместно с проверкой классовой корректности, открывает дорогу к безопасному и гибкому методу конструирования ПО.

Мы видели три решения проблемы ковариантности, два из которых затронули и вопросы ограничения экспорта. Какое же из них правильное?

На этот вопрос нет окончательного ответа. Следствия коварного взаимодействия ОО-типизации и полиморфизма изучены не так хорошо, как вопросы, изложенные в предыдущих лекциях. В последние годы появились многочисленные публикации по этой теме, ссылки на которые приведены в библиографии в конце лекции. Кроме того, я надеюсь, что в настоящей лекции мне удалось представить элементы окончательного решения или хотя бы к нему приблизиться.

Глобальный анализ кажется непрактичным из-за полной проверки всей системы. Тем не менее, он помог нам лучше понять проблему.

Решение на основе Закрепления чрезвычайно привлекательно. Оно простое, интуитивно понятное, удобное в реализации. Тем сильнее мы должны сожалеть о невозможности поддержки в нем ряда ключевых требований ОО-метода, отраженных в принципе Открыт-Закрыт. Если бы мы и впрямь обладали прекрасной интуицией, то закрепление стало бы великолепным решением, но какой разработчик решится утверждать это, или, тем более, признать, что такой интуицией обладали авторы библиотечных классов, наследуемых в его проекте?

Это предположение сужает сферу применения многих опубликованных методов, в том числе, основанных на типовых переменных. Если бы мы были уверены в том, что разработчик всегда заранее знает о будущих изменениях типов, задача бы упростилась в теоретическом плане, но из-за ошибочности гипотезы она не имеет практической ценности.Если от закрепления мы вынуждены отказаться, то наиболее подходящим кажется Кэтколл-решение, достаточно легко объяснимое и применимое на практике. Его пессимизм не должен исключать полезные комбинации операторов. В случае, когда полиморфный кэтколл порожден "легитимным" оператором, всегда можно безопасно допустить его, введением попытки присваивания. Тем самым ряд проверок можно перенести на время выполнения программы. Однако количество таких случаев должно быть предельно мало.

В качестве пояснения я должен заметить, что на момент написания книги решение Кэтколл не было реализовано. До тех пор, пока компилятор не будет адаптирован к проверке правила типов Кэтколл и не будет успешно применен к репрезентативным системам - большим и малым, - рано говорить, что в проблеме примирения статической типизации с полиморфизмом, сочетаемым с ковариантностью и скрытием потомком, сказано последнее слово.

 

 

Завершая обсуждение ковариантности, полезно понять, как общий метод можно применить к решению достаточно общей проблемы. Метод появился как результат Кэтколл-теории, но может использоваться в рамках базисного варианта языка без введения новых правил.

Пусть существуют два согласованных списка, где первый задает лыжников, а второй - соседа по комнате для лыжника из первого списка. Мы хотим выполнять соответствующую процедуру размещения share, только если она разрешена правилами описания типов, которые разрешают поселять девушек с девушками, девушек-призеров с девушками-призерами и так далее. Проблемы такого вида встречаются часто.

Возможно простое решение, основанное на предыдущем обсуждении и попытке присваивания. Рассмотрим универсальную функцию fitted (согласовать):

 

fitted (other: GENERAL): like other is

-- Текущий объект (Current), если его тип соответствует типу объекта,

-- присоединенного к other, иначе void.

do

if other /= Void and then conforms_to (other) then

Result?= Current

end

end

 

 

Функция fitted возвращает текущий объект, но известный как сущность типа, присоединенного к аргументу. Если тип текущего объекта не соответствует типу объекта, присоединенного к аргументу, то возвращается Void. Обратите внимание на роль попытки присваивания. Функция использует компонент conforms_to из класса GENERAL, выясняющий совместимость типов пары объектов.

Замена conforms_to на другой компонент GENERAL с именем same_type дает нам функцию perfect_fitted (полное соответствие), которая возвращает Void, если типы обоих объектов не идентичны.

Функция fitted - дает нам простое решение проблемы соответствия лыжников без нарушения правил описания типов. Так, в код класса SKIER мы можем ввести новую процедуру и использовать ее вместо share, (последнюю можно сделать скрытой процедурой).

 

safe_share (other: SKIER) is

-- Выбрать, если допустимо, other как соседа по номеру.

-- gender_ascertained - установленный пол

local

gender_ascertained_other: like Current

do

gender_ascertained_other:= other.fitted (Current)

if gender_ascertained_other /= Void then

share (gender_ascertained_other)

else

"Вывод: совместное размещение с other невозможно"

end

end

 

 

Для other произвольного типа SKIER (а не только like Current) определим версию gender_ascertained_other, имеющую тип, закрепленный за Current. Гарантировать идентичность типов нам поможет функция perfect_ fitted.

При наличии двух параллельных списков лыжников, представляющих планируемое размещение:

 

occupant1, occupant2: LIST [SKIER]

 

 

можно организовать цикл, выполняя на каждом шаге вызов:

 

occupant1.item.safe_share (occupant2.item)

 

 

сопоставляющий элементы списков, если и только если их типы полностью совместимы.

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 302; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.