КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Физические принципы организации ввода-вывода
Тема 6. Система ввода-вывода Существует много разнообразных устройств, которые могут взаимодействовать с процессором и памятью: таймер, жесткие диски, клавиатура, дисплеи, мышь, модемы и т. д., вплоть до устройств отображения и ввода информации в авиационно-космических тренажерах. Часть этих устройств может быть встроена внутрь корпуса компьютера, часть – вынесена за его пределы и общаться с компьютером через различные линии связи: кабельные, оптоволоконные, радиорелейные, спутниковые и т. д. Конкретный набор устройств и способы их подключения определяются целями функционирования вычислительной системы, желаниями и финансовыми возможностями пользователя. Несмотря на все многообразие устройств, управление их работой и обмен информацией с ними строятся на относительно небольшом наборе принципов, которые мы постараемся разобрать в этом разделе. 6.1.1. Общие сведения об архитектуре компьютера В простейшем случае процессор, память и многочисленные внешние устройства связаны большим количеством электрических соединений – линий, которые в совокупности принято называть локальной магистралью компьютера. Внутри локальной магистрали линии, служащие для передачи сходных сигналов и предназначенные для выполнения сходных функций, принято группировать в шины. При этом понятие шины включает в себя не только набор проводников, но и набор жестко заданных протоколов, определяющий перечень сообщений, который может быть передан с помощью электрических сигналов по этим проводникам. В современных компьютерах выделяют как минимум три шины: - шину данных, состоящую из линий данных и служащую для передачи информации между процессором и памятью, процессором и устройствами ввода-вывода, памятью и внешними устройствами; - адресную шину, состоящую из линий адреса и служащую для задания адреса ячейки памяти или указания устройства ввода-вывода, участвующих в обмене информацией; - шину управления, состоящую из линий управления локальной магистралью и линий ее состояния, определяющих поведение локальной магистрали. В некоторых архитектурных решениях линии состояния выносятся из этой шины в отдельную шину состояния. Количество линий, входящих в состав шины, принято называть разрядностью (шириной) этой шины. Ширина адресной шины, например, определяет максимальный размер оперативной памяти, которая может быть установлена в вычислительной системе. Ширина шины данных определяет максимальный объем информации, которая за один раз может быть получена или передана по этой шине. Операции обмена информацией осуществляются при одновременном участии всех шин. Рассмотрим, к примеру, действия, которые должны быть выполнены для передачи информации из процессора в память. В простейшем случае необходимо выполнить три действия. 1. На адресной шине процессор должен выставить сигналы, соответствующие адресу ячейки памяти, в которую будет осуществляться передача информации. 2. На шину данных процессор должен выставить сигналы, соответствующие информации, которая должна быть записана в память. 3. После выполнения действий 1 и 2 на шину управления выставляются сигналы, соответствующие операции записи и работе с памятью, что приведет к занесению необходимой информации по нужному адресу. Естественно, что приведенные выше действия являются необходимыми, но недостаточными при рассмотрении работы конкретных процессоров и микросхем памяти. Конкретные архитектурные решения могут требовать дополнительных действий: например, выставления на шину управления сигналов частичного использования шины данных (для передачи меньшего количества информации, чем позволяет ширина этой шины); выставления сигнала готовности магистрали после завершения записи в память, разрешающего приступить к новой операции, и т. д. Однако общие принципы выполнения операции записи в память остаются неизменными. В то время как память легко можно представить себе в виде последовательности пронумерованных адресами ячеек, локализованных внутри одной микросхемы или набора микросхем, к устройствам ввода-вывода подобный подход неприменим. Внешние устройства разнесены пространственно и могут подключаться к локальной магистрали в одной точке или множестве точек, получивших название портов ввода-вывода. Тем не менее, точно так же, как ячейки памяти взаимно однозначно отображались в адресное пространство памяти, порты ввода-вывода можно взаимно однозначно отобразить в другое адресное пространство – адресное пространство ввода-вывода. При этом каждый порт ввода-вывода получает свой номер или адрес в этом пространстве. В некоторых случаях, когда адресное пространство памяти (размер которого определяется шириной адресной шины) задействовано не полностью (остались адреса, которым не соответствуют физические ячейки памяти) и протоколы работы с внешним устройством совместимы с протоколами работы с памятью, часть портов ввода-вывода может быть отображена непосредственно в адресное пространство памяти (так, например, поступают с видеопамятью дисплеев), правда, тогда эти порты уже не принято называть портами. Надо отметить, что при отображении портов в адресное пространство памяти для организации доступа к ним в полной мере могут быть задействованы существующие механизмы защиты памяти без организации специальных защитных устройств. В ситуации прямого отображения портов ввода-вывода в адресное пространство памяти действия, необходимые для записи информации и управляющих команд в эти порты или для чтения данных из них и их состояний, ничем не отличаются от действий, производимых для передачи информации между оперативной памятью и процессором, и для их выполнения применяются те же самые команды. Если же порт отображен в адресное пространство ввода-вывода, то процесс обмена информацией инициируется специальными командами ввода-вывода и включает в себя несколько другие действия. Например, для передачи данных в порт необходимо выполнить следующее: - На адресной шине процессор должен выставить сигналы, соответствующие адресу порта, в который будет осуществляться передача информации, в адресном пространстве ввода-вывода. - На шину данных процессор должен выставить сигналы, соответствующие информации, которая должна быть передана в порт. - После выполнения действий 1 и 2 на шину управления выставляются сигналы, соответствующие операции записи и работе с устройствами ввода-вывода (переключение адресных пространств!), что приведет к передаче необходимой информации в нужный порт. Существенное отличие памяти от устройств ввода-вывода заключается в том, что занесение информации в память является окончанием операции записи, в то время как занесение информации в порт зачастую представляет собой инициализацию реального совершения операции ввода-вывода. Что именно должны делать устройства, приняв информацию через свой порт, и каким именно образом они должны поставлять информацию для чтения из порта, определяется электронными схемами устройств, получившими название контроллеров. Контроллер может непосредственно управлять отдельным устройством (например, контроллер диска), а может управлять несколькими устройствами, связываясь с их контроллерами посредством специальных шин ввода-вывода (шина IDE, шина SCSI и т. д.). Современные вычислительные системы могут иметь разнообразную архитектуру, множество шин и магистралей, мосты для перехода информации от одной шины к другой и т. п. Для нас сейчас важными являются только следующие моменты: - Устройства ввода-вывода подключаются к системе через порты. - Могут существовать два адресных пространства: пространство памяти и пространство ввода-вывода. - Порты, как правило, отображаются в адресное пространство ввода-вывода и иногда – непосредственно в адресное пространство памяти. - Использование того или иного адресного пространства определяется типом команды, выполняемой процессором, или типом ее операндов. - Физическим управлением устройством ввода-вывода, передачей информации через порт и выставлением некоторых сигналов на магистрали занимается контроллер устройства. Именно единообразие подключения внешних устройств к вычислительной системе является одной из составляющих идеологии, позволяющих добавлять новые устройства без перепроектирования всей системы. 6.1.2.Структура контроллера устройства Контроллеры устройств ввода-вывода весьма различны как по своему внутреннему строению, так и по исполнению (от одной микросхемы до специализированной вычислительной системы со своим процессором, памятью и т. д.), поскольку им приходится управлять совершенно разными приборами. Не вдаваясь в детали этих различий, мы выделим некоторые общие черты контроллеров, необходимые им для взаимодействия с вычислительной системой. Обычно каждый контроллер имеет по крайней мере четыре внутренних регистра, называемых регистрами состояния, управления, входных данных и выходных данных. Для доступа к содержимому этих регистров вычислительная система может использовать один или несколько портов, что для нас не существенно. Для простоты изложения будем считать, что каждому регистру соответствует свой порт. Регистр состояния содержит биты, значение которых определяется состоянием устройства ввода-вывода и которые доступны только для чтения вычислительной системой. Эти биты индицируют завершение выполнения текущей команды на устройстве (бит занятости), наличие очередного данного в регистре выходных данных (бит готовности данных), возникновение ошибки при выполнении команды (бит ошибки) и т. д. Регистр управления получает данные, которые записываются вычислительной системой для инициализации устройства ввода-вывода или выполнения очередной команды, а также изменения режима работы устройства. Часть битов в этом регистре может быть отведена под код выполняемой команды, часть битов будет кодировать режим работы устройства, бит готовности команды свидетельствует о том, что можно приступить к ее выполнению. Регистр выходных данных служит для помещения в него данных для чтения вычислительной системой, а регистр входных данных предназначен для помещения в него информации, которая должна быть выведена на устройство. Обычно емкость этих регистров не превышает ширину линии данных (а чаще всего меньше ее), хотя некоторые контроллеры могут использовать в качестве регистров очередь FIFO для буферизации поступающей информации. Разумеется, набор регистров и составляющих их битов приблизителен, он призван послужить нам моделью для описания процесса передачи информации от вычислительной системы к внешнему устройству и обратно, но в том или ином виде он обычно присутствует во всех контроллерах устройств. 6.1.3. Опрос устройств и прерывания. Исключительные ситуации и системные вызовы Построив модель контроллера и представляя себе, что скрывается за словами "прочитать информацию из порта" и "записать информацию в порт", мы готовы к рассмотрению процесса взаимодействия устройства и процессора. Как и в предыдущих случаях, примером нам послужит команда записи, теперь уже записи или вывода данных на внешнее устройство. В нашей модели для вывода информации, помещающейся в регистр входных данных, без проверки успешности вывода процессор и контроллер должны связываться следующим образом. 1. Процессор в цикле читает информацию из порта регистра состояний и проверяет значение бита занятости. Если бит занятости установлен, то это означает, что устройство еще не завершило предыдущую операцию, и процессор уходит на новую итерацию цикла. Если бит занятости сброшен, то устройство готово к выполнению новой операции, и процессор переходит на следующий шаг. 2. Процессор записывает код команды вывода в порт регистра управления. 3. Процессор записывает данные в порт регистра входных данных. 4. Процессор устанавливает бит готовности команды. В следующих шагах процессор не задействован. 5. Когда контроллер замечает, что бит готовности команды установлен, он устанавливает бит занятости. 6. Контроллер анализирует код команды в регистре управления и обнаруживает, что это команда вывода. Он берет данные из регистра входных данных и инициирует выполнение команды. 7. После завершения операции контроллер обнуляет бит готовности команды. 8. При успешном завершении операции контроллер обнуляет бит ошибки в регистре состояния, при неудачном завершении команды – устанавливает его. 9. Контроллер сбрасывает бит занятости. При необходимости вывода новой порции информации все эти шаги повторяются. Если процессор интересует, корректно или некорректно была выведена информация, то после шага 4 он должен в цикле считывать информацию из порта регистра состояний до тех пор, пока не будет сброшен бит занятости устройства, после чего проанализировать состояние бита ошибки. Как видим, на первом шаге (и, возможно, после шага 4) процессор ожидает освобождения устройства, непрерывно опрашивая значение бита занятости. Такой способ взаимодействия процессора и контроллера получил название polling или, в русском переводе, способа опроса устройств. Если скорости работы процессора и устройства ввода-вывода примерно равны, то это не приводит к существенному уменьшению полезной работы, совершаемой процессором. Если же скорость работы устройства существенно меньше скорости процессора, то указанная техника резко снижает производительность системы и необходимо применять другой архитектурный подход. Для того чтобы процессор не дожидался состояния готовности устройства ввода-вывода в цикле, а мог выполнять в это время другую работу, необходимо, чтобы устройство само умело сигнализировать процессору о своей готовности. Технический механизм, который позволяет внешним устройствам оповещать процессор о завершении команды вывода или команды ввода, получил название механизма прерываний. В простейшем случае для реализации механизма прерываний необходимо к имеющимся у нас шинам локальной магистрали добавить еще одну линию, соединяющую процессор и устройства ввода-вывода – линию прерываний. По завершении выполнения операции внешнее устройство выставляет на эту линию специальный сигнал, по которому процессор после выполнения очередной команды (или после завершения очередной итерации при выполнении цепочечных команд, т. е. команд, повторяющихся циклически со сдвигом по памяти) изменяет свое поведение. Вместо выполнения очередной команды из потока команд он частично сохраняет содержимое своих регистров и переходит на выполнение программы обработки прерывания, расположенной по заранее оговоренному адресу. При наличии только одной линии прерываний процессор при выполнении этой программы должен опросить состояние всех устройств ввода-вывода, чтобы определить, от какого именно устройства пришло прерывание (polling прерываний!), выполнить необходимые действия (например, вывести в это устройство очередную порцию информации или перевести соответствующий процесс из состояния ожидание в состояние готовность) и сообщить устройству, что прерывание обработано (снять прерывание). В большинстве современных компьютеров процессор стараются полностью освободить от необходимости опроса внешних устройств, в том числе и от определения с помощью опроса устройства, сгенерировавшего сигнал прерывания. Устройства сообщают о своей готовности процессору не напрямую, а через специальный контроллер прерываний, при этом для общения с процессором он может использовать не одну линию, а целую шину прерываний. Каждому устройству присваивается свой номер прерывания, который при возникновении прерывания контроллер прерывания заносит в свой регистр состояния и, возможно, после распознавания процессором сигнала прерывания и получения от него специального запроса выставляет на шину прерываний или шину данных для чтения процессором. Номер прерывания обычно служит индексом в специальной таблице прерываний, хранящейся по адресу, задаваемому при инициализации вычислительной системы, и содержащей адреса программ обработки прерываний – векторы прерываний. Для распределения устройств по номерам прерываний необходимо, чтобы от каждого устройства к контроллеру прерываний шла специальная линия, соответствующая одному номеру прерывания. При наличии множества устройств такое подключение становится невозможным, и на один проводник (один номер прерывания) подключается несколько устройств. В этом случае процессор при обработке прерывания все равно вынужден заниматься опросом устройств для определения устройства, выдавшего прерывание, но в существенно меньшем объеме. Обычно при установке в систему нового устройства ввода-вывода требуется аппаратно или программно определить, каким будет номер прерывания, вырабатываемый этим устройством. Рассматривая кооперацию процессов и взаимоисключения, мы говорили о существовании критических секций внутри ядра операционной системы, при выполнении которых необходимо исключить всякие прерывания от внешних устройств. Для запрещения прерываний, а точнее, для невосприимчивости процессора к внешним прерываниям обычно существуют специальные команды, которые могут маскировать (запрещать) все или некоторые из прерываний устройств ввода-вывода. В то же время определенные кризисные ситуации в вычислительной системе (например, неустранимый сбой в работе оперативной памяти) должны требовать ее немедленной реакции. Такие ситуации вызывают прерывания, которые невозможно замаскировать или запретить и которые поступают в процессор по специальной линии шины прерываний, называемой линией немаскируемых прерываний (NMI – Non-Maskable Interrupt). Не все внешние устройства являются одинаково важными с точки зрения вычислительной системы ("все животные равны, но некоторые равнее других"). Соответственно, некоторые прерывания являются более существенными, чем другие. Контроллер прерываний обычно позволяет устанавливать приоритеты для прерываний от внешних устройств. При почти одновременном возникновении прерываний от нескольких устройств (во время выполнения одной и той же команды процессора) процессору сообщается номер наиболее приоритетного прерывания для его обслуживания в первую очередь. Менее приоритетное прерывание при этом не пропадает, о нем процессору будет доложено после обработки более приоритетного прерывания. Более того, при обработке возникшего прерывания процессор может получить сообщение о возникновении прерывания с более высоким приоритетом и переключиться на его обработку. Механизм обработки прерываний, по которому процессор прекращает выполнение команд в обычном режиме и, частично сохранив свое состояние, отвлекается на выполнение других действий, оказался настолько удобен, что зачастую разработчики процессоров используют его и для других целей. Хотя эти случаи и не относятся к операциям ввода-вывода, мы вынуждены упомянуть их здесь, для того чтобы их не путали с прерываниями. Похожим образом процессор обрабатывает исключительные ситуации и программные прерывания. - Для внешних прерываний характерны следующие особенности. - Внешнее прерывание обнаруживается процессором между выполнением команд (или между итерациями в случае выполнения цепочечных команд). - Процессор при переходе на обработку прерывания сохраняет часть своего состояния перед выполнением следующей команды. Прерывания происходят асинхронно с работой процессора и непредсказуемо, программист никоим образом не может предугадать, в каком именно месте работы программы произойдет прерывание. - Исключительные ситуации возникают во время выполнения процессором команды. К их числу относятся ситуации переполнения, деления на ноль, обращения к отсутствующей странице памяти и т. д. Для исключительных ситуаций характерно следующее. - Исключительные ситуации обнаруживаются процессором во время выполнения команд. - Процессор при переходе на выполнение обработки исключительной ситуации сохраняет часть своего состояния перед выполнением текущей команды. Исключительные ситуации возникают синхронно с работой процессора, но непредсказуемо для программиста, если только тот специально не заставил процессор делить некоторое число на ноль. Программные прерывания возникают после выполнения специальных команд, как правило, для выполнения привилегированных действий внутри системных вызовов. Программные прерывания имеют следующие свойства. - Программное прерывание происходит в результате выполнения специальной команды. - Процессор при выполнении программного прерывания сохраняет свое состояние перед выполнением следующей команды. - Программные прерывания, естественно, возникают синхронно с работой процессора и абсолютно предсказуемы программистом. Надо сказать, что реализация похожих механизмов обработки внешних прерываний, исключительных ситуаций и программных прерываний лежит целиком на совести разработчиков процессоров. Существуют вычислительные системы, где все три ситуации обрабатываются по-разному. 6.1.4. Прямой доступ к памяти (Direct Memory Access – DMA) Использование механизма прерываний позволяет разумно загружать процессор в то время, когда устройство ввода-вывода занимается своей работой. Однако запись или чтение большого количества информации из адресного пространства ввода-вывода (например, с диска) приводят к большому количеству операций ввода-вывода, которые должен выполнять процессор. Для освобождения процессора от операций последовательного вывода данных из оперативной памяти или последовательного ввода в нее был предложен механизм прямого доступа внешних устройств к памяти – ПДП или Direct Memory Access – DMA. Давайте кратко рассмотрим, как работает этот механизм. Для того чтобы какое-либо устройство, кроме процессора, могло записать информацию в память или прочитать ее из памяти, необходимо чтобы это устройство могло забрать у процессора управление локальной магистралью для выставления соответствующих сигналов на шины адреса, данных и управления. Для централизации эти обязанности обычно возлагаются не на каждое устройство в отдельности, а на специальный контроллер – контроллер прямого доступа к памяти. Контроллер прямого доступа к памяти имеет несколько спаренных линий – каналов DMA, которые могут подключаться к различным устройствам. Перед началом использования прямого доступа к памяти этот контроллер необходимо запрограммировать, записав в его порты информацию о том, какой канал или каналы предполагается задействовать, какие операции они будут совершать, какой адрес памяти является начальным для передачи информации и какое количество информации должно быть передано. Получив по одной из линий – каналов DMA, сигнал запроса на передачу данных от внешнего устройства, контроллер по шине управления сообщает процессору о желании взять на себя управление локальной магистралью. Процессор, возможно, через некоторое время, необходимое для завершения его действий с магистралью, передает управление ею контроллеру DMA, известив его специальным сигналом. Контроллер DMA выставляет на адресную шину адрес памяти для передачи очередной порции информации и по второй линии канала прямого доступа к памяти сообщает устройству о готовности магистрали к передаче данных. После этого, используя шину данных и шину управления, контроллер DMA, устройство ввода-вывода и память осуществляют процесс обмена информацией. Затем контроллер прямого доступа к памяти извещает процессор о своем отказе от управления магистралью, и тот берет руководящие функции на себя. При передаче большого количества данных весь процесс повторяется циклически. При прямом доступе к памяти процессор и контроллер DMA по очереди управляют локальной магистралью. Это, конечно, несколько снижает производительность процессора, так как при выполнении некоторых команд или при чтении очередной порции команд во внутренний кэш он должен поджидать освобождения магистрали, но в целом производительность вычислительной системы существенно возрастает. При подключении к системе нового устройства, которое умеет использовать прямой доступ к памяти, обычно необходимо программно или аппаратно задать номер канала DMA, к которому будет приписано устройство. В отличие от прерываний, где один номер прерывания мог соответствовать нескольким устройствам, каналы DMA всегда находятся в монопольном владении устройств.
Дата добавления: 2014-01-07; Просмотров: 788; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |