КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Передающее устройство
Передающее устройство первичной РЛС в значительной степени определяет ее тактико-технические характеристики и стоимость с учетом затрат на эксплуатацию. В современных импульсных РЛС применяются передатчики, выполненные по одно- или многокаскадной схеме. В однокаскадном передатчике роль оконечного каскада и одновременно возбудителя чаще всего выполняет магнетрон. Такие передатчики обычно имеют: · небольшие габаритные размеры и массу, · большой коэффициент полезного действия, · невысокую стабильность частоты и фазы генерируемых колебаний (параметры колебаний существенно зависят от режима работы магнетрона и параметров его нагрузки). Необходимость применения в РЛС цифровых систем СДЦ с высоким коэффициентом подавления помех от местных предметов приводит к высоким требованиям к фазовой стабильности колебаний зондирующего сигнала. В связи с этим магнетронные передатчики в настоящее время находят ограниченное применение в РЛС АС УВД. Основной схемой передающего устройства перспективной РЛС АС УВД является многокаскадная: · задающий генератор, · умножители частоты, · усилители мощности, · выходной усилитель мощности. Достоинство: · высокая стабильность частоты и фазы генерируемых колебаний, · истинно-когерентный метод селекции движущихся целей. Недостаток: · большие габариты и масса, · невысокий КПД. В качестве усилителей мощности в этих передатчиках чаще всего используются пролетные клистроны. Передающая аппаратура двухчастотной импульсной РЛС содержит два передающих устройства - передатчики, которые отличаются друг от друга несущей частотой генерируемых сигналов. Каждый передатчик, выполненный по многокаскадной схеме, предназначен для генерирования последовательности радиоимпульсов высокой частоты, излучаемых антенной РЛС, а также для формирования вспомогательных колебаний: · сигнала гетеродинной частоты, необходимого для работы преобразователя частоты приемника, · сигнала опорной промежуточной частоты, необходимого для работы фазового детектора в системе СДЦ. Если в приемном тракте используется малошумящий параметрический усилитель, то в схеме передатчика формируется еще один вспомогательный сигнал - сигнал накачки для этого усилителя. Структурная схема одного из передающих устройств РЛС показана на рис. 1.5. Рассмотрим принцип действия передающего устройства. Задающий генератор генерирует три сигнала: · сигнал гетеродинной частоты в виде непрерывных колебаний с частотой Fг, · сигнал опорной промежуточной частоты в виде непрерывных колебаний с частотой FПР=35 МГц, · импульсно-модулированный сигнал промежуточной частоты в виде последовательности радиоимпульсов с несущей частотой FПР, длительностью 7 мкс и частотой повторения зондирующих импульсов РЛС.
Рис. 1.5. Структурная схема передающего устройства двухчастотной РЛС (один частотный канал)
Сигнал частоты гетеродина через элементы коаксиального высокочастотного тракта поступает на один из входов смесительно-усилительного устройства (СУУ); на второй вход СУУ подается импульсно-модулированный сигнал промежуточной частоты. В результате взаимодействия этих сигналов в смесительном каскаде СУУ формируется импульсно-модулированный сигнал суммарной частоты Fс=Fг+Fпр, который выделяется колебательной системой второго каскада СУУ, усиливается в последующих каскадах СУУ и передается через элементы коаксиального ВЧ тракта в оконечный усилитель мощности передатчика. Следует подчеркнуть, что СУУ выполняет в данном случае функции, характерные для возбудителя многокаскадного передатчика. Амплитудно-импульсная модуляция сигнала промежуточной частоты применена для того, чтобы уменьшить уровень паразитного сигнала несущей частоты на выходе передатчика в промежутках между зондирующими импульсами. При этом импульсы запуска импульсного модулятора ключевой схемы КС длительностью 0,8 мкс поступают от подмодулятора передатчика. В усилительных каскадах СУУ и оконечном усилителе мощности ОУ используются многорезонаторные пролетные клистроны, работающие в импульсном режиме. Это достигается за счет подачи на катоды клистронов импульсов отрицательной полярности. Сигналы запуска импульсного модулятора в схеме СУУ формируются в подмодуляторе передатчика. Импульсы модуляции длительностью 3,3 мкс для оконечного усилителя формируются мощным импульсным модулятором М, который питается от источника высокого напряжения ИВН и выполнен на основе тиратронов. Импульсы поджига тиратронов вырабатываются подмодулятором, имеют амплитуду 800 В и длительность 4 мкс. На выходе оконечного усилителя формируется последовательность радиоимпульсов длительностью 3,3 мкс при средней- мощности сигнала 3,6 кВт, которая передается в антенно-фидерную систему радиолокационной станции. Электрические соединения высокочастотных узлов передатчика выполнены в виде коаксиального высокочастотного тракта, обеспечивающего распределение мощности генерируемых колебаний и вывод небольшой части мощности для контроля работоспособности и регулировки передатчика. Для обеспечения необходимого теплового режима мощного клистрона ОУ применяется система жидкостного охлаждения. Основные технические характеристики передатчика · Рабочая длина волны генерируемых колебаний, см....................................................... 23 · Средняя выходная мощность генерируемых колебаний, кВт, не менее 3,6 · Длительность радиоимпульса, мкс 3,3 ± 0,3 · Частота повторения импульсов, Гц.... ~ 333 · Мощность сигнала частоты гетеродина, мВт, не менее........................................................... 60 · Напряжение сигнала опорной промежуточной частоты (на нагрузке 75 Ом), В, не менее 1 Рассмотрим работу основных устройств передающего тракта РЛС. Задающий генератор имеет два независимых канала. Первый канал формирует колебания гетеродинной частоты и состоит: · из кварцевого генератора КГ1, · трех умножителей частоты Умн с общим коэффициентом умножения 12, · одного усилителя напряжения, · трех усилителей мощности. Усилители напряжения и мощности включаются между КГ1 и каскадами умножения частоты, выполняй при этом функции буферных каскадов. К выходу последнего умножителя частоты последовательно подключены проходная детекторная головка для контроля сигнала гетеродинной частоты и выходной фильтр для подавления составляющих этого сигнала с комбинационными частотами. Детекторная головка и фильтр конструктивно являются элементами коаксиального ВЧ тракта передатчика.
Дата добавления: 2014-01-07; Просмотров: 2599; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |