КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Оценка результатов выборочного наблюдения и распространение их на генеральную совокупность
Заключительным этапом выборочного наблюдения является распространение его результатов на генеральную совокупность. Однако часто при статистическом изучении социально-экономических явлений этому процессу предшествует оценка результатов наблюдения с точки зрения самой возможности распространения. Вывод о возможности распространения в значительной степени зависит от качества основы выборки, прежде всего от ее полноты. Под полнотой подразумевается наличие или представленность всех типов или групп данной генеральной совокупности в основе выборки. Неполнота основы может привести к нарушению представительности выборки и, как следствие, к неправильным выводам при анализе данных наблюдения. Однако не следует обосновывать возможность распространения выборочных данных только анализом качества исходной информации для отбора. Более точной основой суждения о возможности распространения представляется расчет относительной ошибки:
для средней: , для доли: , где - относительная предельная ошибка выборки; и - предельная ошибка для среднего значения или доли признака соответственно; и - генеральная средняя и доля соответственно. Суждение о возможности распространения выборочных данных можно составить, если в формулах заменить и соответствующими выборочными характеристиками. Необходимым условием при этом является соответствие плановой и фактической численности и структуры выборочной совокупности. При больших расхождениях использование этого приема может привести к ошибочным суждениям. Если величина относительной ошибки не превышает заранее установленного для данного обследования предельного значения, то данные выборочного наблюдения являются представительными и могут быть распространены на генеральную совокупность. Существуют два основных метода распространения - прямой пересчет и способ коэффициентов. Сущность способа прямого пересчета заключается в умножении среднего значения признака, найденного в результате выборочного наблюдения, на объем генеральной совокупности. Практические расчеты при этом не вызывают серьезных затруднений. Например, на основании выборочного обследования 1000 молодых семей требуется оценить потребность в местах в детских яслях. С помощью метода прямого пересчета это можно сделать следующим образом. Известно, что ясли могут посещать дети в возрасте до трех лет. По материалам выборочного обследования следует вычислить среднее число детей этого возраста в расчете на 1 семью. Предположим, что оно составляет 0,3 человека. Умножив это число на численность генеральной совокупности, получим, что в детских яслях потребуется выделить 300 мест. В условиях существования большого числа факторов, влияющих на точность данных выборочного наблюдения, использование точечной оценки при распространении выборочных характеристик на генеральную совокупность в статистических исследованиях часто нецелесообразно. Во всех случаях, когда это возможно, правильнее пользоваться интервальной оценкой, позволяющей учесть размер предельной ошибки выборки, рассчитанной для средней или для доли признака. Так, если в нашем примере число детей в возрасте до трех лет по выборочным данным составило 0,3 человека, а предельная ошибка - ± 0,1 человека, то требуемое количество мест в детских учреждениях будет находиться в пределах от 200 до 400. Наряду со способом прямого пересчета при распространении данных выборочного наблюдения на генеральную совокупность применяется так называемый способ коэффициентов. Данный способ целесообразно использовать в случаях, когда выборочное наблюдение проводится с целью проверки и уточнения данных сплошного наблюдения, в частности численности учтенных единиц совокупности. При этом следует использовать следующую формулу: , где Y - численность совокупности с поправкой на недоучет; - численность совокупности без этой поправки; - численность совокупности в контрольных точках по первоначальным данным; - численность совокупности в тех же точках по данным контрольных мероприятий. До сих пор возможности выборки при уточнении данных сплошного наблюдения используются недостаточно. В то же время в современных условиях данный способ может быть, например, одним из инструментов контроля деятельности коммерческих структур со стороны финансовых органов. При уточнении данных сплошного наблюдения на основе контрольных выборочных мероприятий определяется так называемая поправка на недоучет. Метод ее расчета наиболее широко применяется в обследованиях относительно небольших совокупностей, когда их объем не превышает нескольких сотен или тысяч единиц. Пример 8. При проведении учета коммерческих палаток в городе было зарегистрировано следующее их количество в районах: А - 2000; Б - 1500; В - 750. С целью проверки данных сплошного учета проведены контрольные обходы части обследованных районов. Их результаты содержатся в нижеприведенной табл. 7.4. Таблица 8.4.
Дата добавления: 2014-01-07; Просмотров: 284; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |