КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Оценка линейного коэффициента корреляции
Пример: На основе выборочных данных о деловой активности однотипных коммерческих структур оценить тесноту связи между прибылью y (млн. руб.) и затратами на 1 руб. произведенной продукции x (коп.). Таблица 9.6. Расчетная таблица для определения коэффициента корреляции
1. Используя формулу (9.5.) получаем: 2. По формуле (9.6.) значение коэффициента корреляции составило:
Таким образом, результат по всем формулам одинаков и свидетельствует о сильной обратной зависимости между изучаемыми признаками. В случае наличия линейной и нелинейной зависимости между двумя признаками для измерения тесноты связи применяют так называемое корреляционное отношение. Различают эмпирическое и теоретическое корреляционное отношение. Эмпирическое корреляционное отношение рассчитывается по данным группировки, когда характеризует отклонения групповых средних результативного показателя от общей средней: (9.8.) где - корреляционное отношение; - общая дисперсия; - средняя из частных (групповых) дисперсий; - межгрупповая дисперсия (дисперсия групповых средних). Все эти дисперсии есть дисперсии результативного признака. Теоретическое корреляционное отношение определяется по формуле:
(9.9.) где - дисперсия выравненных значений результативного признака, то есть рассчитанные по уравнению регрессии; - дисперсия эмпирических (фактических) значений результативного признака. Корреляционное отношение изменяется в пределах от 0 до 1 и анализ степени тесноты связи полностью соответствует линейному коэффициенту корреляции (таблица 9.1.) Для измерения тесноты связи при множественной корреляционной зависимости, то есть при исследовании трех и более признаков одновременно, вычисляется множественный и частные коэффициенты корреляции. Множественный коэффициент корреляци и вычисляется при наличии линейной связи между результативным и несколькими факторными признаками, а также между каждой парой факторных признаков. Множественный коэффициент корреляции для двух факторных признаков вычисляется по формуле:
(9.10.)
где - парные коэффициенты корреляции между признаками. Множественный коэффициент корреляции изменяется в пределах от 0 до 1 и по определению положителен: Приближение R к единице свидетельствует о сильной зависимости между признаками. На основе данных таблицы 9.4. рассчитаем коэффициент множественной корреляции и его ошибку: ; ; .
Множественный коэффициент корреляции составит:
Частные коэффициенты корреляции характеризуют степень тесноты связи между двумя признаками и при фиксированном значении других (k – 2) факторных признаков, то есть когда влияниеисключается, то есть оценивается связь между и в «чистом виде». В случае зависимости y от двух факторных признаков и коэффициенты частной корреляции имеют вид:
; .
Дата добавления: 2014-01-07; Просмотров: 628; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |