КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Назначение и способы построения проверочной матрицы циклического кода
Проверочные матрицы Hl,n(x) ЦК могут использоваться для выбора как способов кодирования информации, так и алгоритмов декодирования. Проверочные матрицы ЦК могут быть построены с использованием порождающей матрицы Gk,n(x), е диничной матрицы проверок и проверочного полинома h(x). Сущность способа построения проверочной матрицы Нl, n(x) c использованием канонической порождающей матрицы Gk,n(x) состоит в следующем. Пусть задана следующая каноническая порождающая матрица ЦК с параметрами (n,k,do)=(7,4,3) вида: 1000 101 G4,7(x) = 0100 111 0010 110 0001 011 Первый столбец проверочной матрицы Н3,7(х) для данного кода записываем, используя проверочные символы первой строки G4,7(x), а второй, третий и четвертый столбцы H3,7(x) формируем путем записи проверочных символов второй, третьей и четвертой строк G4,7(x) и далее записываем три столбца единичной подматрицы. В результате получаем следующую проверочную матрицу: а1а2а3а4 b1b2b3 1110 100 H3,7(x) = 0111 010 1101 001 Ненулевые символы строк проверочной матрицы определяют позиции информационных символов, участвующие в формировании проверочных уравнений. Так для построенной проверочной матрицы H3,7(x) можно сформировать следующие три проверочных уравнения: b1= а1Åa2Åa3, b2= а2Åa3Åa4, b3= а1Åa2Åa4. Принцип построения проверочной матрицы с использованием единичной подматрицы и остатков от деления аналогичен принципу построения порождающей матрицы. Количество остатков от деления хп+1 на Р(х) должно быть равно количеству строк единичной подматрицы. Сущность принципа построения проверочной матрицы ЦК с использованием проверочного полинома h(x) состоит в следующем. Первоначально определяем проверочный полином как отношение хп+1 на Р(х), т.е. Полученный полином переводим в двоичную форму записи, записываем в виде первой строки проверочной матрицы Нl,k(х) и дополняем нулями до количества столбцов, равное п. Далее выполняем (l-1) циклический сдвиг двоичных символов первой строки. Пример: Построить проверочную матрицу ЦК с параметрами Решение: 1) определяем проверочный полином 2) переводим h(x) в двоичную форму записи h(x) – 11101; 3) записываем 11101 в виде первой строки Н3,7(х) и дополняем справа двумя нулевыми символами до n=7; 4) выполняя (l - 1)=(3-1)=2 циклических сдвига двоичных символов первой строки Н3,7(х) строим проверочную матрицу Н3.7(х) следующего вида: Проверочные уравнения: b1= а1Åa2Åa3, b2= а2Åa3Åa4, b3= а3Åa4Åb1= а3Åa4Å а1Åa2Åa3= а1Åa2Åa4.
Дата добавления: 2014-01-07; Просмотров: 542; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |