Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Криоэлектронные приборы

 

 

Работа криоэлектронных приборов основана на явлении сверхпроводимости, когда скачкообразно уменьшается сопротивление ряда металлов и сплавов при охлаждении их до температур, близких к абсолютному нулю. Сверхпроводимость наступает, если охладить образец до температуры меньше критической. При этом сопротивление образца будет в 1012 раз меньше, чем при температуре больше критической (практически равно нулю). Известно около 30 элементов (например, индий, таллий, тантал, свинец, висмут, титан и др.) и большое число сплавов и соединений, которые могут служить сверхпроводниками.

Свойства сверхпроводников зависят не только от температуры, но и от электрического и магнитного полей, механических напряжений и наиболее сильно изменяются при воздействии внешнего магнитного поля. При приложении к сверхпроводнику определенного внешнего магнитного поля сверхпроводимость нарушается. Причем чем ближе температура охлаждения к критической, тем требуются меньшие напряженности поля для разрушения сверхпроводимости.

Элементарным прибором, использующим свойства сверхпроводимости, является криотрон, который состоит из отрезка проволоки-вентиля, изготовленного из сверхпроводника с низким значением критического магнитного поля (материал – тантал). Вентиль обмотан проволокой (материал – ниобий) из сверхпроводника с высоким значением критического магнитного поля. Если через обмотку криотрона пропустить требуемый ток, то на поверхности проводника – вентиля появляется магнитное поле, обусловленное этим током, которое превысит значение критического магнитного поля. В результате вентиль переходит в состояние, характеризующееся наличием определенного сопротивления. При уменьшении тока, управляющего переключением вентиля, последний вновь становится сверхпроводящим. Причем значение управляющего тока зависит от значения тока, проходящего через вентиль. Таким образом, криотрон является аналогом обычного электромагнитного реле. Рассмотренная конструкция криотрона проста, дешева, потребляет небольшую мощность, но требует применения устройства охлаждения большого объема.

Если применить пленочную конструкцию криотрона, можно одновременно микроминиатюризировать его и повысить быстродействие. Такая конструкция криотрона изображена на рис. 134.

На стеклянную подложку наносят вентильную пленку из олова, затем изоляцию из монооксида кремния и перпендикулярно (в плоскости подложки) к вентильной пленке – управляющую пленку из свинца.

Дальнейшего быстродействия криотрона можно достигнуть размещением между подложкой и вентильной пленкой свинцового экрана, который в сверхпроводящем состоянии уменьшает индуктивность криотрона.

На основе криотрона можно изготовить различные устройства (дешифраторы, сумматоры, запоминающие устройства, счетчики импульсов и др.). Базовым элементом логических схем является ячейка на двух криотронах. Для построения запоминающих устройств логические элементы на криотронах объединяют в матрицы.

При соединении двух сверхпроводящих слоев слабым контактом (слоем) из сверхпроводящего или несверхпроводящего материала при определенных условиях можно получить эффект Джозефсона.

В области контакта образуется туннельный переход Джозефсона, в котором осуществляется прохождение электронных пар через тонкий изолирующий барьер. Если на такой переход подать постоянный ток смещения по знамению, меньше порогового тока, то падение напряжения на переходе оказывается равным нулю, что соответствует отсутствию сопротивления. Пороговый ток является функцией напряженности магнитного поля, приложенного к переходу. Меняя напряженность магнитного поля, можно изменить пороговый ток и при постоянном питающем токе, получить падение напряжения на переходе, что соответствует наличию сопротивления. Таким образом, переход Джозефсона может находиться в двух различных состояниях (0 и 1), как и логические схемы.

На основе элементарной ячейки, использующей эффект Джозефсона, можно создать логические устройства необходимой сложности (запоминающие устройства, сдвиговые регистры). Устройства, основанные на эффекте Джозефсона, отличаются высоким быстродействием (10-11c), малой потребляемой мощностью и небольшими размерами (десятки микрон). Существуют определенные трудности, связанные с подбором сверхпроводящих материалов для приборов, работающих в широком диапазоне температур, технологической воспроизводимостью характеристик приборов и созданием малогабаритных охлаждающих систем.

Использование явления сверхпроводимости перспективно не только для создания элементов ЭВМ, но и для устройств очень высокой чувствительности и точности.

 

 

Тема 5.2 Хемотроны и другие функциональные устройства

Хемотроника как новое научное направление возникло на стыке двух развивающихся направлений: электрохимии и электроники.

На первом этапе своего развития хемотроника как техническая отрасль была призвана разрабатывать общие теоретические и технологические принципы построения электрохимических преобразователей. При этом создавались в основном аналоги электронных приборов с той ризницей что носителями заряда были не электроны в вакууме, газе, или твердом теле, а ионы в растворе. Так были созданы электрохимические выпрямители, интеграторы, усилители. Подвижность ионов в растворе намного меньше, чем подвижность электронов в газе, или твердом теле, поэтому электрохимические приборы являются низкочастотными по своей физической природе, однако они и имеют ряд преимуществ перед электронными приборами.

В настоящее время хемотроника сформировалась как наука, изучающая перспективы построения информационных и управ­ляющих систем на основе процессов, протекающих в жидкостях и на границе жидких фаз.

В ряде литературных источников вместо термина «хемотро­ника» по аналогии с электроникой фигурирует термин «ионика», так как во всех электрохимических приборах используются ионные процессы.

Исследования показали, что жидкостные системы имеют ряд
важных преимуществ перед системами на основе твердых тел,
прежде всего к ним следует отнести компактность и многофункциональность жидкостных элементов, где в небольшом объеме может происходить одновременно с разной скоростью множество разнообразных физико-химических процессов. Эти системы надежны и обеспечивают возможность изменения своей
внутренней структуры, т. е. внутреннего управления. Наиболее
характерным примером жидкостной системы является человеческий мозг.

Таким образом, перспектива развития хемотроники — это создание информационных, и управляющих систем на жидкост­ной основе, а в более далеком будущем - биопреобразователей информации. Для успешного развития хемотроники требуются фундаментальные исследования не только физики жидкости, но так же сложных физико – химических и электрохимических процессов в жидкостях и на границах жидких фаз.

<== предыдущая лекция | следующая лекция ==>
Магнитоэлектронные приборы | Хемотронные приборы
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1555; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.