КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Конические поверхности
Определение 1. Конической поверхностью или конусом с вершиной в точке М0 называется поверхность, образованная всеми прямыми, каждая из которых проходит через точку М0 и через некоторую точку линии γ. Точка М0 называется вершиной конуса, линия γ – направляющей. Прямые, проходящие через вершину конуса и лежащие на нем, называются образующими конуса.
Теорема. Поверхностью 2-го порядка с каноническим уравнением . (1) является конусом с вершиной в начале координат, направляющей которой служит эллипс γ: (2)
Доказательство. Пусть M1 (x1; y1; z1) – некоторая точка поверхности α, отличная от начала координат;?=ОM1 – прямая, M (x; y; z) принадлежит?. Так как | |, то, такое что (3)
Так как, то ее координаты x1; y1; z1 удовлетворяют уравнению (1). Учитывая условия (3) имеем, где t ≠ 0. Разделив обе части уравнения на t2 ≠ 0, получим, что координаты произвольной точки M (x; y; z) прямой m=ОM1 удовлетворяют уравнению (1). Ему также удовлетворяют и координаты точки О(0,0,0). Таким образом, любая точка M (x; y; z) прямой m=ОM1 лежит на поверхности α с уравнением (1), то есть прямая ОM1 =m – прямолинейная образующая поверхности α. Рассмотрим теперь сечение поверхности α плоскостью, параллельной плоскости Oxy с уравнением z = c ≠ 0: или Это сечение является эллипсом с полуосями а и b. Следовательно, она пересекает этот эллипс. Согласно определению 1 поверхность α является конусом с вершиной О (0,0,0) (Все прямые m проходят через начало координат); образующие этого конуса есть прямые m, направляющая – указанный выше эллипс. Теорема доказана. Определение 2. Поверхность 2-го порядка с каноническим уравнением (1) называется конусом второго порядка. Свойства конуса 2-го порядка. 1º Конус с уравнением (1) симметричен относительно всех координатных плоскостей, всех координатных осей и начала координат (так как все переменные содержатся в уравнении (1) во второй степени). 2º Все координатные оси имеют с конусом (1) единственную общую точку – начало координат, которая служит его вершиной и центром одновременно
3º Сечение конуса (1) плоскостями Oxz и Oyz – пары пересекающихся в начале координат прямых; плоскостью Oxy – точка О (0,0,0). 4º Сечения конуса (1) плоскостями, параллельными координатным плоскостям, но не совпадающими с ними, являются либо эллипсами, либо гиперболами. 5º Если а = b, то эти эллипсы являются окружностями, а сам конус – поверхностью вращения. Он называется в этом случае круговым конусом.
Определение 3: коническим сечением называется линия по которой пересекается круговой конус с произвольной плоскостью не проходящей через его вершину. Таким образом, каноническими сечениями является эллипс, гипербола и парабола.
Р1 Р2
Эллипс. Парабола (α║р) Гипербола (α║р1, α║р2)
Дата добавления: 2014-01-07; Просмотров: 435; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |