Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уравнения неразрывности, движения, энергии и состояния жидкости




Общие уравнения движения жидкости в трубах.

Рассмотрим движение жидкости в обогреваемой трубе диаметром d (рис. 8.3). Считаем жидкость химически однородной, т.е. в ней нет примесей других веществ. Для описания состояния потока жидкости необходимо определить поля температуры Т, давления р и скорости W

Т = Т (x, y, z, t);

p = p (x, y, z, t);(8.1)

W = W (x, y, z, t),

где х, у, z - координаты; t - время.

Зная поля температуры, давления и скорости, можно рассчитать характеристики теплообмена и гидродинамики (тепловой поток, гидравлическое сопротивление и т.д.).

Поля температуры, давления и скорости называются стационарными, если T, р и W не изменяются во времени, или нестационарными, если зависят от времени.

Для определения Т, р и W используются уравнения неразрывности, движения и энергии. Эти уравнения получены из основных законов физики - закона сохранения массы, закона сохранения количества движения и закона сохранения энергии - с учетом специфических законов, характеризующих движение вязкой теплопроводной жидкости.

Запишем уравнения неразрывности, движения и энергии для одномерного потока (по оси z).

Уравнение неразрывности:

где ρ - плотность жидкости, зависящая от Т и р.

При стационарном движении ∂ρ/∂τ = 0 и уравнение неразрывности примет вид

Таким образом, для установившегося движения при постоянном сечении трубы f, м2, и отсутствии притока (или оттока) жидкости получаем

ρw = const, (8.4)

т.е. массовая скорость потока ρw, кг/(м2·с), в указанных условиях есть величина постоянная.

Расход массы жидкости через трубу G, кг/с,

G = ρ wf. (8.5)

Уравнение движения. Выделим из потока жидкости в трубе (рис. 8.3) двумя сечениями I и II, расположенными на расстоянии dz, элементарный объем движущейся жидкости dV = fdz. Применяя к нему теорему о количестве движения (изменение количества движения материальной системы равно сумме приложенных к системе внешних сил), запишем

(8.6)

Для стационарного потока изменение количества движения dK массы жидкости, проходящей через сечение трубы l

(8.7)

где a' - коэффициент, учитывающий неравномерность распределения скоростей по сечению трубы. Для развитого турбулентного потока а' ≈ 1.

Внешними силами, приложенными к объему dV, являются силы давления потока, силы вязкостного сопротивления, силы земного притяжения. Изменение этих сил на элементе dz в проекции на ось z:

изменение силы давления

(8.8)

изменение сил вязкостного сопротивления (сил трения, сил гидравлического сопротивления) dFГИДР определяется касательным напряжением sСТ у стенки по экспериментальным данным

sСТ = λρw2/8,

где λ - коэффициент сопротивления трения.

C учетом этого

(8.9)

изменение сил земного притяжения (нивелирная составляющая)

(8.10)

где α - угол между горизонталью и осью z (рис. 8.3).

Приравняв (8.7) к сумме (8.8), (8.9) и (8.10) и поделив обе части выражения на dz и, получим

(8.11)

Уравнение (8.11) можно представить в виде дифференциального уравнения

(8.12)

Интегрируя уравнение (8.12) с учетом (8.4), получаем формулу для расчета перепада давления на длине трубы

где ρСР (аналогично wСР) - среднеинтегральное значение плотности (скорости); w1, w2 - значения скорости в начале и конце участка трубы.

Выражение (8.13) обычно записывается в общем виде

где Δpтр - сопротивление трения,

Δpм- местное сопротивление (сопротивление входа в трубу и выхода из нее, шайб, поворотов и т.п.),

(8.14б)

где ξМ - коэффициент местного сопротивления; ΔpУСК - сопротивление ускорения,

ΔpУСК = ρw(w2 - w1); (8.14в)

ΔpНИВ - нивелирное сопротивление,

ΔpНИВ = gl ρСРsinα; (8.14г)

для вертикальной трубы при подъемном движении среды sin α = 1, при опускном движении sin α = -1




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1027; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.