Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Шифрование в режиме гаммирования

Гаммирование – это наложение (снятие) на открытые (зашифрованные) данные криптографической гаммы, то есть последовательности элементов данных, вырабатываемых с помощью некоторого криптографического алгоритма, для получения зашифрованных (открытых) данных. Для наложения гаммы при зашифровании и ее снятия при расшифровании должны использоваться взаимно обратные бинарные операции, например, сложение и вычитание по модулю 264 для 64-битных блоков данных. В ГОСТе для этой цели используется операция побитного сложения по модулю 2, поскольку она является обратной самой себе и к тому же наиболее просто реализуется.

Гамма шифра для этого режима получается следующим образом: с помощью алгоритмического рекуррентного генератора последовательности чисел (РГПЧ) вырабатываются 64-битные блоки данных, которые далее подвергаются преобразованию по циклу 32-З, то есть зашифрованию в режиме простой замены, в результате получаются блоки гаммы. Благодаря тому, что наложение и снятие гаммы осуществляется при помощи одной и той же операции побитового исключающего ИЛИ, алгоритмы зашифрования и расшифрования в режиме гаммирования идентичны, их общая схема приведена на рисунке 7.9.

РГПЧ, используемый для выработки гаммы, является рекуррентной функцией: Ω i +1= fi), где Ω i – элементы рекуррентной последовательности, f – функция преобразования. Следовательно, неизбежно возникает вопрос о его инициализации, то есть об элементе Ω0. В действительности, этот элемент данных является параметром алгоритма для режимов гаммирования, на схемах он обозначен как S, и называется в криптографии синхропосылкой, а в ГОСТе – начальным заполнением одного из регистров шифрователя. По определенным соображениям разработчики ГОСТа решили использовать для инициализации РГПЧ не непосредственно синхропосылку, а результат ее преобразования по циклу 32-З: Ω0 = Ц 32-З(S). Последовательность элементов, вырабатываемых РГПЧ, целиком зависит от его начального заполнения, то есть элементы этой последовательности являются функцией своего номера и начального заполнения РГПЧ: Ω i = fi0), где fi (X) = f (fi –1(X)), f 0(X)= X. С учетом преобразования по алгоритму простой замены добавляется еще и зависимость от ключа:

Г i = Ц 32-Зi) = Ц 32-З(fi0)) = Ц 32-З(fi (Ц 32-З(S))) = j i (S, K),

где Г ii -тый элемент гаммы;

K – ключ.

Таким образом, последовательность элементов гаммы для использования в режиме гаммирования однозначно определяется ключевыми данными и синхропосылкой. Естественно, для обратимости процедуры шифрования в процессах за- и расшифрования должна использоваться одна и та же синхропосылка. Из требования уникальности гаммы, невыполнение которого приводит к катастрофическому снижению стойкости шифра, следует, что для шифрования двух различных массивов данных на одном ключе необходимо обеспечить использование различных синхропосылок. Это приводит к необходимости хранить или передавать синхропосылку по каналам связи вместе с зашифрованными данными, хотя в отдельных особых случаях она может быть предопределена или вычисляться особым образом, если исключается шифрование двух массивов на одном ключе.

Теперь подробно рассмотрим РГПЧ, используемый в ГОСТе для генерации элементов гаммы. Прежде всего надо отметить, что к нему не предъявляются требования обеспечения каких-либо статистических характеристик вырабатываемой последователь­ности чисел. РГПЧ спроектирован разработчиками ГОСТа исходя из необходимости выполнения следующих условий:

· период повторения последовательности чисел, вырабатываемой РГПЧ, не должен сильно (в процентном отношении) отличаться от максимально возможного при заданном размере блока значения 264;

· соседние значения, вырабатываемые РГПЧ, должны отличаться друг от друга в каждом байте, иначе задача криптоаналитика будет упрощена;

· РГПЧ должен быть достаточно просто реализуем как аппаратно, так и программно на наиболее распространенных типах процессоров, большинство из которых, как известно, имеют разрядность 32 бита.

Исходя из перечисленных принципов РГПЧ, имеет следующие характеристики:

· в 64-битовом блоке старшая и младшая части обрабатываются независимо друг от друга, фактически, существуют два независимых РГПЧ для старшей и младшей частей блока.

· рекуррентные соотношения для старшей и младшей частей следующие:

Ω0i+1= (Ω0i +C1) mod 232, где C 1=101010116;

Ω1i+1= (Ω1i +C2 - 1) mod (232 – 1) +1, где C 2=101010416;

Нижний индекс в записи числа означает его систему счисления, таким образом, константы, используемые на данном шаге, записаны в 16-ричной системе счисления.

· период повторения последовательности для младшей части составляет 232, для старшей части 232–1, для всей последовательности период составляет 232×(232–1).

Особенности гаммирования как режима шифрования.

 

1. Одинаковые блоки в открытом массиве данных дадут при зашифровании различные блоки шифротекста, что позволит скрыть факт их идентичности.

2. Поскольку наложение гаммы выполняется побитно, шифрование неполного блока данных легко выполнимо как шифрование битов этого неполного блока, для чего используется соответствующие биты блока гаммы.

3. Синхропосылка, использованная при зашифровании, каким-то образом должна быть передана для использования при расшифровании. Это может быть достигнуто следующими путями:

· хранить или передавать синхропосылку вместе с зашифрованным массивом данных, что приведет к увеличению размера массива данных при зашифровании на размер синхропосылки, то есть на 8 байт;

· использовать предопределенное значение синхропосылки или вырабатывать ее синхронно источником и приемником по определенному закону, в этом случае изменение размера передаваемого или хранимого массива данных отсутствует.

 

Оба способа дополняют друг друга, и в тех редких случаях, где не работает первый, наиболее употребительный из них, может быть использован второй, более экзотический. Второй способ имеет гораздо меньшее применение, поскольку сделать синхропосылку предопределенной можно только в том случае, если на данном комплекте ключевой информации шифруется заведомо не более одного массива данных, что бывает в редких случаях. Генерировать синхропосылку синхронно у источника и получателя массива данных также не всегда представляется возможным, поскольку требует жесткой привязки к чему-либо в системе. Так, здравая на первый взгляд идея использовать в качестве синхропосылки в системе передачи зашифрованных сообщений номер передаваемого сообщения не подходит, поскольку сообщение может потеряться и не дойти до адресата, в этом случае произойдет десинхронизация систем шифрования источника и приемника. Поэтому в рассмотренном случае нет альтернативы передаче синхропосылки вместе с зашифрованным сообщением.

 

С другой стороны, можно привести и обратный пример. Допустим, шифрование данных используется для защиты информации на диске, и реализовано оно на низком уровне, для обеспечения независимого доступа данные шифруются по секторам. В этом случае невозможно хранить синхропосылку вместе с зашифрованными данными, поскольку размер сектора нельзя изменить, однако ее можно вычислять как некоторую функцию от номера считывающей головки диска, номера дорожки (цилиндра) и номера сектора на дорожке. В этом случае синхропосылка привязывается к положению сектора на диске, которое вряд ли может измениться без переформатирования диска, то есть без уничтожения данных на нем.

 

Режим гаммирования имеет еще одну интересную особенность. В этом режиме биты массива данных шифруются независимо друг от друга. Таким образом, каждый бит шифротекста зависит от соответствующего бита открытого текста и, естественно, порядкового номера бита в массиве: tiш = tiо гi = f (tiо, i). Из этого вытекает, что изменение бита шифротекста на противоположное значение приведет к аналогичному изменению бита открытого текста на противоположный.

 

Данное свойство дает злоумышленнику возможность воздействуя на биты шифротекста вносить предсказуемые и даже целенаправленные изменения в соответствующий открытый текст, получаемый после его расшифрования, не обладая при этом секретным ключом. Это иллюстрирует хорошо известный в криптологии факт, что «секретность и аутентичность суть различные свойства шифров». Иными словами, свойства шифров обеспечивать защиту от несанкционированного ознакомления с содержимым сообщения и от несанкционированного внесения изменений в сообщение являются независимыми и лишь в отдельных случаях могут пересекаться. Сказанное означает, что существуют криптографические алгоритмы, обеспечивающие определенную секретность зашифрованных данных и при этом никак не защищающие от внесения изменений и наоборот, обеспечивающие аутентичность данных и никак не ограничивающие возможность ознакомления с ними. По этой причине рассматриваемое свойство режима гаммирования не должно рассматриваться как его недостаток.

 
 


Шаг 0 - Определяет исходные данные для основного шага криптопреобразования: T о(ш)– массив открытых (зашифрованных) данных произвольного размера, подвергаемый процедуре зашифрования (расшифрования), по ходу процедуры массив подвергается преобразованию порциями по 64 бита; S – синхропосылка, 64-битный элемент данных, необходимый для инициализации генератора гаммы; Шаг 1. Начальное преобразование синхропосылки, выполняемое для ее «рандомизации», то есть для

устранения статистических закономерностей, присутствующих в ней, результат используется как начальное заполнение РГПЧ;
Рис. 7.9. Алгоритм зашифрования

(расшифрования) данных в

режиме гаммирования

 

Шаг 2. Один шаг работы РГПЧ, реализующий его рекуррентный алгоритм. В ходе данного шага старшая (S 1) и младшая (S 0) части последовательности данных вырабатываются независимо друг от друга;

 

Шаг 3. Гаммирование. Очередной 64-битный элемент, выработанный РГПЧ, подвергается процедуре зашифрования по циклу 32–З, результат используется как элемент гаммы для зашифрования (расшифрования) очередного блока открытых (зашифрованных) данных того же размера.

Шаг 4. Результат работы алгоритма – зашифрованный (расшифрованный) массив данных.

<== предыдущая лекция | следующая лекция ==>
Шифрование в режиме простой замены | Шифрование в режиме гаммирования с обратной связью
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1723; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.02 сек.