Существуют три правила, которые часто используются. Эти правила практически самоочевидны, и они одинаково применимы для дискретных и непрерывных случайных переменных.
Правило 1. Математическое ожидание суммы нескольких переменных равно сумме их математических ожиданий. Например, если имеются три случайные переменные , и , то
. (A.4)
Правило 2. Если случайная переменная умножается на константу, то ее математическое ожидание умножается на ту же константу. Если – случайная переменная и – константа, то
. (A.5)
Правило 3. Математическое ожидание константы есть она сама. Например, если – константа, то
. (A.6)
Следствие из трех правил:
.
Независимость случайных переменных
Две случайные переменные и называются независимыми, если
(A.7)
для любых функций и . Из независимости следует как важный частный случай, что .
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление